Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Linear Coupled Thermoelastic Analysis

    J. Sladek1, V. Sladek1, Ch. Zhang2, C.L. Tan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 57-68, 2006, DOI:10.3970/cmes.2006.016.057

    Abstract The Meshless Local Petrov-Galerkin (MLPG) method for linear transient coupled thermoelastic analysis is presented. Orthotropic material properties are considered here. A Heaviside step function as the test functions is applied in the weak-form to derive local integral equations for solving two-dimensional (2-D) problems. In transient coupled thermoelasticity an inertial term appears in the equations of motion. The second governing equation derived from the energy balance in coupled thermoelasticity has a diffusive character. To eliminate the time-dependence in these equations, the Laplace-transform technique is applied to both of them. Local integral equations are written on small sub-domains with a circular shape.… More >

Displaying 1-10 on page 1 of 1. Per Page