Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    The Inverse Problem of Determining Heat Transfer Coefficients by the Meshless Local Petrov-Galerkin Method

    J. Sladek1, V. Sladek1, P.H. Wen2, Y.C. Hon3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.2, pp. 191-218, 2009, DOI:10.3970/cmes.2009.048.191

    Abstract The meshless local Petrov-Galerkin (MLPG) method is used to solve the inverse heat conduction problem of predicting the distribution of the heat transfer coefficient on the boundary of 2-D and axisymmetric bodies. Using this method, nodes are randomly distributed over the numerical solution domain, and surrounding each of these nodes, a circular sub-domain is introduced. By choosing a unit step function as the test function, the local integral equations (LIE) on the boundaries of these sub-domains are derived. To eliminate the time variation in the governing equation, the Laplace transform technique is applied. The local integral equations are nonsingular and… More >

Displaying 1-10 on page 1 of 1. Per Page