Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Silencing ribosomal protein L4 enhances the inhibitory effects of triptolide on non-small cell lung cancer cells by disrupting the mouse double minute 2 protein–P53 tumor suppressor pathway

    NAN TANG1,#, YAJING ZHAN1,#, JIAYAN MAO2,#, ANKANG YIN1, WEI WANG3,*, JUAN WANG3,*

    BIOCELL, Vol.47, No.9, pp. 2009-2026, 2023, DOI:10.32604/biocell.2023.029269

    Abstract Non-small cell lung cancer (NSCLC) is a malignant tumor with high incidence worldwide. Triptolide (TP), extracted from Tripterygium wilfordii Hook F, exhibits potent broad-spectrum antitumor activity. Although some mechanisms through which TP inhibits NSCLC are well understood, those that involve ribosomal proteins remain yet to be understood. In this study, the transcriptome and proteome were integrated and analyzed. Our data indicated ribosomal protein L4 (RPL4) to be a core hub protein in the protein-protein interaction network. RPL4 is overexpressed in NSCLC tissues and cells. Transfection with siRPL4 or TP treatment alone arrested the cell cycle in the G1 phase, induced… More > Graphic Abstract

    Silencing ribosomal protein L4 enhances the inhibitory effects of triptolide on non-small cell lung cancer cells by disrupting the mouse double minute 2 protein–P53 tumor suppressor pathway

  • Open Access

    ARTICLE

    Triptolide Inhibits Breast Cancer Cell Metastasis Through Inducing the Expression of miR-146a, a Negative Regulator of Rho GTPase

    Qin Liu*†, Wei Wang, Fangqiong Li, Dongyang Yu, Chunfen Xu*, Hongbing Hu*

    Oncology Research, Vol.27, No.9, pp. 1043-1050, 2019, DOI:10.3727/096504019X15560124931900

    Abstract Triptolide, an extract of Tripterygium wilfordii, has been shown to have a potent anticancer activity. In the present study, it was found that triptolide could effectively induce apoptosis and inhibit proliferation and invasion in malignant MDA-MB-231 breast cancer cells. The study focused on its effect on inhibiting invasion, which has not been extensively reported to date. We predicted that triptolide may change invasion activity via microRNAs (miRNAs), which have been recognized as important regulators of gene expression. miRNAome variation in MDA-MB-231 cells with or without triptolide treatment demonstrated that miR-146a was upregulated following treatment with triptolide. Our previous studies have… More >

  • Open Access

    REVIEW

    The Roles of Plant-Derived Triptolide on Non-Small Cell Lung Cancer

    Jie Wei*†1, Yuanliang Yan*†1, Xi Chen*†, Long Qian*†, Shuangshuang Zeng*†, Zhi Li, Shuang Dai*†, Zhicheng Gong*†,Zhijie Xu§

    Oncology Research, Vol.27, No.7, pp. 849-858, 2019, DOI:10.3727/096504018X15447833065047

    Abstract Over the past decade, natural compounds have been proven to be effective against many human diseases, including cancers. Triptolide (TPL), a diterpenoid triepoxide from the Chinese herb Tripterygium wilfordii Hook F, has exhibited attractive cytotoxic activity on several cancer cells. An increasing number of studies have emphasized the antitumor effects of TPL on non-small cell lung cancer (NSCLC). Here we mainly focused on the key molecular signaling pathways that lead to the inhibitory effects of TPL on human NSCLC, such as mitogen-activated protein kinases (MAPKs) modulation, inhibition of NF- B activation, suppression of miRNA expression, etc. In addition, the effect… More >

Displaying 1-10 on page 1 of 3. Per Page