Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field… More >

Displaying 1-10 on page 1 of 1. Per Page