Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    UNSTEADY FLOW AND HEAT TRANSFER OF UCM FLUID IN A POROUS CHANNEL WITH VARIABLE THERMAL CONDUCTIVITY AND ION SLIP EFFECTS

    Odelu Ojjela*, K. Pravin Kashyap, N. Naresh Kuma, Samir Kumar Das

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.32

    Abstract This article presents an unsteady incompressible Upper Convected Maxwell (UCM) fluid flow with temperature dependent thermal conductivity between parallel porous plates which are maintained at different temperatures varying periodically with time. Assume that there is a periodic suction and injection at the upper and lower plates respectively. The governing partial differential equations are reduced to non linear ordinary differential equations by using similarity transformations and the solution is obtained using differential transform method. The effects of various fluid and geometric parameters on the velocity components, temperature distribution and skin friction are discussed in detail through graphs. More >

  • Open Access

    ARTICLE

    COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD

    K.V. Prasada, Hanumesh Vaidyaa,*, O. D. Makindeb , K. Vajraveluc , A. Wakifd , Hussain Bashaa

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.11

    Abstract This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed graphically and discussed… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ANALYSIS FOR THE UNSTEADY UCM FLUID FLOW WITH HALL EFFECTS: THE TWO-PARAMETER LIE TRANSFORMATIONS

    Muhammad Nazim Tufaila , Musharafa Saleema,b,*, Qasim Ali Chaudhryb,†

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-10, 2020, DOI:10.5098/hmt.15.14

    Abstract This methodology presented the unsteady three-dimensional laminar flow since Hall effects inducing the cross flow in z-axis. The boundary layer and the low magnetic Reynolds number approximations are used to simplify the system of equations derived from the constitutive laws. The upper-convected Maxwell (UCM) fluid model used for Hall effects with unsteady heat transfer, which passed through the infinite stretching sheet. This flow model has intensified with the effects of magnetohydrodynamic (MHD), thermal radiation and heat generation-absorption. Here, we selected the two-parameter Lie scaling transformations to convert the highly non-linear partial differential equations (PDEs) to the ordinary differential equations (ODEs)… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Flow and Heat Transfer of an Upper-Convected Maxwell Fluid Due to a Stretching Sheet

    R. C. Bataller1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 153-174, 2011, DOI:10.3970/fdmp.2011.007.153

    Abstract We present a numerical study of the flow and heat transfer of an incompressible upper-convected Maxwell (UCM) fluid in the presence of an uniform transverse magnetic field over a porous stretching sheet taking into account suction at the surface as well as viscous dissipation and thermal radiation effects. Selected similarity analyses have been carried out by means of a numerical implementation. The effects on the velocity and temperature fields over the sheet of the parameters like elasticity number, suction velocity, magnetic parameter, radiation parameter, Prandtl number and Eckert number are also analyzed. More >

  • Open Access

    ARTICLE

    Towards a Numerical Benchmark for MHD Flows of Upper-Convected Maxwell (UCM) Fluids over a Porous Stretching Sheet

    R.C. Bataller1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 337-350, 2010, DOI:10.3970/fdmp.2010.006.337

    Abstract The present research gathers an accurate numerical study of the laminar flow induced in an incompressible upper-convected Maxwell (UCM) fluid by a linear stretching of a flat, horizontal and porous sheet in the presence of a transverse magnetic field. The governing partial differential equations are converted into an ordinary differential equation by a similarity transformation. The effects on the velocity field over the sheet of the parameters like elasticity number, suction/blowing velocity, and magnetic parameter are also studied. It has also been attempted to show capabilities and wide-range applications of the 4thorder Runge-Kutta method in comparison with the homotopy analysis… More >

  • Open Access

    ARTICLE

    A Finite Element Investigation of Elastic Flow Asymmetries in Cross-Slot Geometries Using a Direct Steady Solver

    A. Filali1, L. Khezzar1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 307-329, 2013, DOI:10.3970/fdmp.2013.009.307

    Abstract Numerical investigations of purely-elastic instabilities occurring in creeping flows are reported in planar cross-slot geometries with both sharp and round corners. The fluid is described by the upper-convected Maxwell model, and the governing equations are solved using the finite element technique based on a steady (non-iterative) direct solver implemented in the POLYFLOWcommercial software (version 14.0). Specifically, extensive simulations were carried out on different meshes, with and without the use of flow perturbations, for a wide range of rheological parameters. Such simulations show the onset of flow asymmetries above a critical Deborah number (De). The effect of rounding the corners is… More >

Displaying 1-10 on page 1 of 6. Per Page