Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Marriage of Furans and Vegetable Oils through Click Chemistry for the Preparation of Macromolecular Materials: A Succinct Review

    Talita M. Lacerda1,2,*, Alessandro Gandini1,2

    Journal of Renewable Materials, Vol.2, No.1, pp. 2-12, 2014, DOI:10.7569/JRM.2013.634127

    Abstract The inevitable future scarcity of fossil resources, coupled with sustainability considerations, have stimulated the use of renewable resources for material synthesis, and highly effi cient polymerization methods that meet the requirements of green chemistry have drawn attention to fatty acid-based polymers. Additionally, the polymerization of furan monomers and the exploitation of some of the chemical peculiarities of the furan heterocycle have generated a wide diversity of macromolecular materials. A novel approach is reviewed here, calling upon the combined use of both vegetable oils and their derivatives together with furans, as a promising technique to obtain new materials from two renewable… More >

  • Open Access

    ARTICLE

    Effects of Heaving Motion on the Aerodynamic Performance of a Double-Element Wing in Ground Effect

    Ioannis Oxyzoglou*, Zheng-Tong Xie

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1093-1114, 2020, DOI:10.32604/fdmp.2020.012237

    Abstract The broad implication of the paper is to elucidate the significance of the dynamic heaving motion in the aerodynamic performance of multi-element wings, currently considered as a promising aspect for the improvement of the aerodynamic correlation between CFD, wind tunnel and track testing in race car applications. The relationship between the varying aerodynamic forces, the vortex shedding, and the unsteady pressure field of a heaving double-element wing is investigated for a range of mean ride heights, frequencies, and amplitudes, using a two-dimensional (2D) unsteady Reynolds-averaged Navier-Stokes (URANS) approach and an overset mesh method for modelling the moving wing. The analysis… More >

  • Open Access

    ARTICLE

    Hybrid LES/URANS Simulation of Rayleigh-Bénard Convection Using BEM

    Primož Kocutar1, *, Jure Ravnik1, Leopold Škerget1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 1-22, 2020, DOI:10.32604/cmes.2020.08728

    Abstract In this paper, we develop and test a unified hybrid LES/URANS turbulence model with two different Large Eddy Simulation (LES) turbulence models. The numerical algorithm is based on the Boundary Element Method. In the existing hybrid LES/URANS turbulence model we implemented a new Smagorinsky LES turbulence model. The hybrid LES/URANS turbulence model is unified, which means that the LES/URANS interface is changed dynamically during simulation using a physical quantity. In order to define the interface between LES and unsteady Reynolds Averaged Navier Stokes (URANS) zones during the simulation, we use the Reynolds number based on turbulent kinetic energy as a… More >

Displaying 1-10 on page 1 of 3. Per Page