Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access



    M.S. Abdelmeguid*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.28

    Abstract In this paper, the effects of suction/blowing and thermal radiation on a hydromagnetic viscous fluid over a non-linear stretching and shrinking sheet are investigated. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The system of equations is solved analytically employing homotopy analysis method (HAM). Convergence of the HAM solution is checked. The resulting similarity equations are solved numerically using Matlab bvp4c numerical routine. It is found that dual solutions exist for this particular problem. The comparison of analytical solution and numerical solution for the velocity profile is an excellent agreement. More >

  • Open Access



    R. Suresh Babu1,2, B. Rushi Kumar1,*, P.A. Dinesh2

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.3

    Abstract This problem deals with the effects of double diffusive, mixed convective flow of an incompressible viscous fluid through a vertical heated plate embedded in a non-Darcy porous medium under the influence of variable fluid properties numerically. The governing equations are modeled for the double diffusive boundary layer flow to understand the behaviour of velocity, temperature and concentration for variable fluid properties namely permeability, porosity, thermal conductivity and solutal diffusivity of the physical modal. Using a suitable similarity transformation, the highly nonlinear coupled PDE's are reduced into a set of coupled ordinary differential equations. By applying the Shooting technique with the… More >

  • Open Access


    Vibration of a Two-Layer “Metal+PZT” Plate Contacting with Viscous Fluid

    Zeynep Ekicioglu Kuzeci1,*, Surkay D. Akbarov2,3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4337-4362, 2023, DOI:10.32604/cmc.2023.033446

    Abstract The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate “elastic+PZT”, a compressible viscous fluid, and a rigid wall. It is assumed that the PZT (piezoelectric) layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer. This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid. It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of… More >

  • Open Access


    Free Convection of a Viscous Electrically Conducting Fluid Past a Stretching Surface

    Abdulmajeed D. Aldabesh1, P. K. Pattnaik2, S. Jena3, S. R. Mishra4, Mouna Ben Henda5, Iskander Tlili5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 205-222, 2022, DOI:10.32604/fdmp.2022.017899

    Abstract Free convection of a viscous electrically conducting liquid past a vertical stretching surface is investigated in the presence of a transverse magnetic field. Natural convection is driven by both thermal and solutal buoyancy. The original partial differential equations governing the problem are turned into a set of ordinary differential equations through a similar variables transformation. This alternate set of equations is solved through a Differential Transform Method (DTM) and the Pade approximation. The response of the considered physical system to the non-dimensional parameters accounting for the relative importance of different effects is assessed considering different situations. More >

  • Open Access


    Fractional Analysis of Viscous Fluid Flow with Heat and Mass Transfer Over a Flexible Rotating Disk

    Muhammad Shuaib1, Muhammad Bilal1, Muhammad Altaf Khan2, *, Sharaf J. Malebary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 377-400, 2020, DOI:10.32604/cmes.2020.08076

    Abstract An unsteady viscous fluid flow with Dufour and Soret effect, which results in heat and mass transfer due to upward and downward motion of flexible rotating disk, has been studied. The upward or downward motion of non rotating disk results in two dimensional flow, while the vertical action and rotation of the disk results in three dimensional flow. By using an appropriate transformation the governing equations are transformed into the system of ordinary differential equations. The system of ordinary differential equations is further converted into first order differential equation by selecting suitable variables. Then, we generalize the model by using… More >

  • Open Access


    On the Discrete-Analytical Solution Method of the Problems Related to the Dynamics of Hydro-Elastic Systems Consisting of a Pre-Strained Moving Elastic Plate, Compressible Viscous Fluid and RigidWall

    Surkay D. Akbarov1,2,3, Panakh G. Panakhlı4

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.2, pp. 89-112, 2015, DOI:10.3970/cmes.2015.108.089

    Abstract The discrete-analytical solution method is proposed for the solution to problems related to the dynamics of the hydro-elastic system consisting of an axially-moving pre-stressed plate, compressible viscous fluid and rigid wall. The fluid flow caused by the axial movement of the plate and the pre-stresses in the plate are taken into consideration as the initial state of the system under consideration. It is assumed that the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and an additional stress-strain state in the plate. The additional stress-strain state in the plate is… More >

  • Open Access


    Forced Vibrations of a System Consisting of a Pre-strained Highly Elastic Plate under Compressible Viscous Fluid Loading

    S. D. Akbarov1,2, M. I. Ismailov3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.4, pp. 359-390, 2014, DOI:10.3970/cmes.2014.097.359

    Abstract The forced vibration of the system consisting of the pre-stretched plate made of highly-elastic material and half-plane filled by barotropic compressible Newtonian viscous fluid is considered. It is assumed that this forced vibration is caused by the lineal located time-harmonic force acting on the free face plane of the plate. The motion of the pre-stretched plate is written by utilizing of the linearized exact equations of the theory of elastic waves in the initially stressed bodies, but the motion of the compressible viscous fluid is described by the linearized Navier-Stokes equations. The elastic relations of the plate material are described… More >

  • Open Access


    Adaptively Refined Hybrid FDM-RBF Meshless Scheme with Applications to Laminar and Turbulent Viscous Fluid Flows

    S. Gerace1, K. Erhart1, E. Divo1,2, A. Kassab1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.1, pp. 35-68, 2011, DOI:10.3970/cmes.2011.081.035

    Abstract The focus of this work is to demonstrate a novel approach to true CFD automation based on an adaptive Cartesian point distribution process coupled with a Meshless flow solution algorithm. As Meshless method solutions require only an underlying nodal distribution, this approach works well even for complex flow geometries with non-aligned domain boundaries. Through the addition of a so-called shadow layer of body-fitted nodes, application of boundary conditions is simplified considerably, eliminating the stair-casing issues of typical Cartesian-based techniques. This paper describes the approach taken to automatically generate the Meshless nodal distribution, along with the details of an automatic local… More >

  • Open Access


    Motion of Small Solid Particles in a Viscous Fluid Enclosed in a Cavity

    L. Hedhili, A. Sellier, L. Elasmi, F. Feuillebois

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.2, pp. 137-170, 2011, DOI:10.3970/cmes.2011.073.137

    Abstract The motion of a solid particle embedded in a viscous fluid in a closed container requires a precise account of wall effects when in creeping flow. The boundary integral method, which amounts to solving a Fredholm integral equation for the stress on the particle and walls, is used here. The accuracy of the method is improved by using curvilinear six-node triangular boundary elements, the size of which is specially adapted to the particle shape and position with respect to walls. The method is applied to resolve the case of a moving particle in a parallelepiped container. It is validated by… More >

  • Open Access


    Stabilized Meshless Local Petrov-Galerkin (MLPG) Method for Incompressible Viscous Fluid Flows

    M. Haji Mohammadi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.2, pp. 75-94, 2008, DOI:10.3970/cmes.2008.029.075

    Abstract In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier--Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape function… More >

Displaying 1-10 on page 1 of 11. Per Page