Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    An Experimental and Numerical Thermal Flow Analysis in a Solar Air Collector with Different Delta Wing Height Ratios

    Ghobad Shafiei Sabet1,*, Ali Sari1, Ahmad Fakhari2,*, Nasrin Afsarimanesh3, Dominic Organ4, Seyed Mehran Hoseini1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 491-509, 2024, DOI:10.32604/fhmt.2024.048290

    Abstract This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector (SAC) using a Delta Wing Vortex Generator (DWVG), and the effects of different height ratios (R = 0.6, 0.8, 1, 1.2 and 1.4) in delta wing vortex generators, which were not considered in the earlier studies, are investigated. Energy and exergy analyses are performed to gain maximum efficiency. The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000, corresponding to the volume flow rate of 5.21–26.07 m/h. It is More >

  • Open Access

    ARTICLE

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

    Tian Li1,2,*, Hao Liang1, Zerui Xiang2, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 463-473, 2024, DOI:10.32604/fdmp.2023.043618

    Abstract A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains. Using the shear stress transport (SST) k-ω turbulence model, the effect of various vortex generator types on the aerodynamic characteristics of an ICE2 (Inter-city Electricity) train has been investigated. The results indicate that the vortex generators with wider triangle, trapezoid, and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake. This alteration effectively reduces the resistance of the tail car. Meanwhile, the micro-ramp More > Graphic Abstract

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

  • Open Access

    ARTICLE

    Application of Vortex Generators to Remove Heat Trapped in Closed Channels

    Alim Al Ayub Ahmed1,*, Salim Oudah Mezan2, Binyamin3, Murtadha Doghiam Abdullah4, Elena Tesleva5, Linar G. Akhmetov6, Rustem Zalilov7, Mustafa M. Kadhim8,9,10, Abduladheem Turki Jalil11,12

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 15-24, 2023, DOI:10.32604/fdmp.2022.019922

    Abstract The utilization of vortex generators to increase heat transfer from cylinders installed inside a duct is investigated. In particular, a channel containing eight cylinders with volumetric heat sources is considered for different values of the Reynolds number. The effective possibility to use vortex generators with different sizes to increase heat transfer and, consequently, reduce the surface temperature of the cylinders is examined. Also, the amount of pressure drop inside the channel due to the presence of vortex generators is considered and compared with the cases without vortex generators. The results show that although the addition More >

  • Open Access

    ARTICLE

    EFFECTS OF BLOCKAGE LOCATIONS FOR ENHANCED HEAT TRANSFER AND FLOW VISUALIZATION IN A TESTED DUCT WITH DUAL-INCLINED BAFFLES (DIB): A CFD ANALYSIS

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.20

    Abstract Numerical analysis of fluid flow mechanism and heat transfer in a heat exchanger duct (HXD) with dual-inclined baffles (DIB) are reported. Three DIB types are examined: 1. “Type A” is located at the center of the HXD, 2. “Type B” is located on the upper-lower duct walls (as an orifice) and 3. “Type C” is a combination of the type A and B (as double orifices). The impacts of the ratio of DIB heights (b) to the square duct height (H; b/H) on increased heat transfer and friction loss are analyzed. Laminar flow (Re =… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF WINGLET VORTEX GENERATOR POSITION IN RECTANGULAR-DUCT-TYPE SOLAR AIR HEATERS

    Boonchai Lertnuwat

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.1

    Abstract The aim of this work is to numerically investigate the effect of mounting winglet vortex generators on different positions in rectangular-duct-type air heaters. The two investigated positions were the absorber plate and the insulation plate, opposite to the absorber plate. Four shapes of winglet vortex generator, i.e. perforated rectangular winglet vortex generators (P-RWVG), rectangular winglet vortex generators (RWVG), perforated trapezoidal winglet vortex generators (P-TWVG) and trapezoidal winglet vortex generators (TWVG), were used. Results showed that heat-transfer capability would be better if the winglet vortex generators were mounted on the opposite insulation plate in the cases More >

  • Open Access

    ARTICLE

    VISUALIZATION OF INDUCED COUNTER-ROTATING VORTICES FOR ELECTRIC VEHICLES BATTERY MODULE THERMAL MANAGEMENT

    A.C. Budimana,*, S. M. Hasheminejadb, Sudirjaa, A. Mitayanic, S. H. Winotod

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-6, 2022, DOI:10.5098/hmt.19.9

    Abstract Streamwise development of counter-rotating vortices induced by three different types of chevron Vortex Generators (VGs) placed upstream an Electric Vehicles (EV) dummy battery module is experimentally visualized using a smoke-wire method. From the single chevron reference case, the mushroom-like vortices do not collapse until passing the module. When more chevrons are used in line, the vortices become more prominent. It can also be observed that the vortex sizes and shapes are significantly influenced by the spanwise base length of the chevron. The induced vortices from all three VGs suggest a potential heat transfer augmentation for More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ASSESSMENT IN A CIRCULAR TUBE FITTED WITH VARIOUS SIZES OF MODIFIED V-BAFFLES: A NUMERICAL INVESTIGATION

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.17

    Abstract This research reports numerical examinations on fluid flow, heat transfer behavior and thermal performance analysis in a circular tube equipped with modified V-baffles (CTMVB). The modified V-baffle (MVB) is a combination vortex generator between V-baffles/V-orifices which are placed on the tube wall and V-baffles which are inserted at the core of the tested tube. The MVB height is separated into two parts; b1 represents the MVB height on the tube wall, while b2 represents the MVB height at the core of the tested round tube. The MVB height to tube diameter ratios, b/D, are adjusted; b1/D… More >

  • Open Access

    ARTICLE

    Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nanofluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators

    Rachid Maouedj1, Younes Menni2, Mustafa Inc3,4,*, Yu-Ming Chu5,6,*, Houari Ameur7, Giulio Lorenzini8

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 855-889, 2021, DOI:10.32604/cmes.2021.014524

    Abstract Re-engineering the channel heat exchangers (CHEs) is the goal of many recent studies, due to their great importance in the scope of energy transport in various industrial and environmental fields. Changing the internal geometry of the CHEs by using extended surfaces, i.e., VGs (vortex generators), is the most common technique to enhance the efficiency of heat exchangers. This work aims to develop a new design of solar collectors to improve the overall energy efficiency. The study presents a new channel design by introducing VGs. The FVM (finite volume method) was adopted as a numerical technique… More >

  • Open Access

    ARTICLE

    CFD-Based Simulation and Analysis of Hydrothermal Aspects in Solar Channel Heat Exchangers with Various Designed Vortex Generators

    Mohamed Salmi1,2, Younes Menni3, Ali J. Chamkha4,5,*, Houari Ameur6, Rachid Maouedj7, Ahmed Youcef7

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 147-173, 2021, DOI:10.32604/cmes.2021.012839

    Abstract The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is analyzed numerically. The bottom wall of the exchanger is kept adiabatic, while a constant value of the temperature is set at the upper wall. The duct is equipped with a flat rectangular fin on the upper wall and an upstream V-shaped baffle on the lower wall. Furthermore, five hot wall-attached rib shapes are considered: trapezoidal, square, triangular pointing upstream (type I), triangular pointing downstream (type II), and equilateral-triangular (type III) cross sections. Effects of the flow rates are… More >

  • Open Access

    ARTICLE

    Numerical Study of the Intensity Correlation between Secondary Flow and Heat Transfer of Circle Tube-Finned Heat Exchanger with Vortex Generators

    Yong Guan1, Wanling Hu1, 2, *, Yun Zhang1, Kewei Song2, 3, Liangbi Wang2, 3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 237-256, 2020, DOI:10.32604/cmes.2020.09141

    Abstract The application of vortex generators in tube-finned heat exchangers is very universal. The vortex generators can generate secondary flow, and as we all know secondary flow can obviously strengthen heat transfer. To use vortex generators much more efficiently in the circle tube-finned heat exchangers, the intensity correlation study between secondary flow and heat transfer is needed. 22 different structures of circle tubefinned heat exchangers were numerically studied, including the plain fin cases and the cases with vortex generators. In addition, the influence of fin spacing, transverse and longitudinal tube pitch, heights and attack angle of More >

Displaying 1-10 on page 1 of 14. Per Page