Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    A New Logarithmic Family of Distributions: Properties and Applications

    Yanping Wang1,2, Zhengqiang Feng1, Almaspoor Zahra3,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 919-929, 2021, DOI:10.32604/cmc.2020.012261

    Abstract In recent years, there has been an increased interest among the researchers to propose new families of distributions to provide the best fit to lifetime data with monotonic (increasing, decreasing, constant) and non-monotonic (unimodal, modified unimodal, bathtub) hazard functions. We further carry this area of research and propose a new family of lifetime distributions called a new logarithmic family via the T-X family approach. For the proposed family, explicit expressions for some mathematical properties along with the estimation of parameters through Maximum likelihood method are discussed. A sub-model, called a new logarithmic Weibull distribution is taken up. The proposed model… More >

  • Open Access

    ARTICLE

    Modelling Insurance Losses with a New Family of Heavy-Tailed Distributions

    Muhammad Arif1, Dost Muhammad Khan1, Saima Khan Khosa2, Muhammad Aamir1, Adnan Aslam3, Zubair Ahmad4, Wei Gao5,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 537-550, 2021, DOI:10.32604/cmc.2020.012420

    Abstract The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues. In this article, we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences. A specific sub-model form of our suggested family, named as a new extended heavy-tailed Weibull distribution is examined in detail. Some basic characterizations, including quantile function and raw moments have been derived. The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method. To judge the performance of the maximum likelihood estimators, a simulation analysis is performed in… More >

  • Open Access

    ARTICLE

    Sample Size Determination for Development of S-N Curve of A356.2-T6 Aluminum Alloy

    P. Ramamurty Raju1, B. Satyanarayana2, K. Ramji3

    Structural Durability & Health Monitoring, Vol.4, No.3, pp. 161-172, 2008, DOI:10.3970/sdhm.2008.004.161

    Abstract This paper presents the details of method of sample size determination to estimate the characteristic fatigue life of aluminum alloy. The characteristic fatigue life of Aluminum alloy A356.2-T6 has been estimated by assuming a two parameter Weibull distribution model. A stepwise procedure is outlined to determine the number of specimens required at a predetermined stress amplitude to estimate the fatigue life within an acceptable error at a given probability and confidence level. The percentage of error is calculated at various probabilities and confidence levels (C.L). The probabilities considered are 50%, 90% and 95% whereas C.Ls considered are 90%, 95% and… More >

  • Open Access

    ARTICLE

    Potential spatial expansion of Ulmus macrocarpa population in Keerqin sandy lands, China

    Jianar A, JH Yuan, YF Yang

    Phyton-International Journal of Experimental Botany, Vol.87, pp. 32-39, 2018, DOI:10.32604/phyton.2018.87.032

    Abstract Ulmus macrocarpa Hance can form monodominant woodlands in the semiarid Keerqin sandy lands, China. Methods of sampling at meter intervals from the bases of trees at the woodland edges and isolated trees, respectively, were employed along vertical sections in different directions. Using statistical methods based on the density function of the Weibull distribution, the patterns of seed dispersal and the spatial expansion response of U. macrocarpa, which is a typical anemochorous plant, were analyzed. Although as an effect of the wind direction varying owing to the monsoon, there were differences in the degree of dispersal of seeds in terms of… More >

  • Open Access

    ARTICLE

    Low Velocity Impact Response and Failure Assessment of Textile Reinforced Concrete Slabs

    Subashini I1, a, Smitha Gopinath2, *, Aahrthy R3, b

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 291-306, 2017, DOI:10.3970/cmc.2017.053.291

    Abstract Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasticity model was employed to the cementitious binder of TRC and Von-Mises criterion was used for the textile reinforcement. Strain dependent smoothed particle hydrodynamics (SPH) was used to assess the damage and failure pattern of TRC slabs. Numerical simulation was carried out on TRC slabs with two different volume fraction of glass textile reinforcement to predict the energy absorption… More >

  • Open Access

    ARTICLE

    A Note on Statistical Strength of Carbon Nanotubes

    X. Frank Xu1,2, Yuxin Jie3, Irene J. Beyerlein4

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 17-30, 2013, DOI:10.3970/cmc.2013.038.017

    Abstract This note aims to relate the measured strength statistics of individual carbon nanotubes (CNTs) to the physics of brittle fracture and the weakest link model. By approximating an arbitrary flaw size distribution with a segmented power law, an effort is made to extend applicability of the Weibull distribution to arbitrary flaw populations, which explains why the Weibull distribution fits the experimental data of CNTs and many other brittle materials, and why in other cases it is not so clear. A generalized Weibull distribution is proposed to account for all non-asymptotic cases. The published CNT testing data are analyzed, and finally… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed hybrid approach is applied to… More >

Displaying 21-30 on page 3 of 27. Per Page