Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    A Phase Field Description of Spatio-Temporal Behavior in Thin Liquid Layers

    Rodica Borcia1, Michael Bestehorn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.1, pp. 1-12, 2010, DOI:10.3970/fdmp.2010.006.001

    Abstract We study numerically the fully nonlinear evolution of thin liquid films on solid supports in three spatial dimensions. A phase field model is used as mathematical tool. Homogeneous and inhomogeneous substrates are taken into account. For flat homogeneous substrates the stability of thin liquid layers is investigated under the action of gravity. The coarsening process at the solid boundary can be controlled on inhomogeneous substrates. On substrates chemically patterned in an adequate way with hydrophobic and hydrophilic spots (functional surfaces), one can obtain stable regular liquid droplets as final dewetted morphology. More >

  • Open Access

    ARTICLE

    On the Dynamic Capillary Effects in the Wetting and evaporation process of Binary Droplets

    K. Sefiane1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 267-276, 2005, DOI:10.3970/fdmp.2005.001.267

    Abstract In this paper the experimental results on the wetting behaviour of volatile binary sessile drops are reported. The evaporation rate is varied through the control of the ambient total pressure. The dynamic wetting contact angle of an evaporating Water-Ethanol drop is investigated at various sub-atmospheric pressures. The wetting properties (contact angle, shape and volume) are monitored in time using a drop shape analysis instrument. The results show that the evaporation of the binary droplet takes place in two stages: the first stage where the wetting behaviour is very similar to the pure ethanol case and a second stage where the… More >

Displaying 11-20 on page 2 of 12. Per Page