Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    THERMAL AND MOMENTUM SLIP EFFECTS ON HYDROMAGNETIC CONVECTION FLOW OF A WILLIAMSON FLUID PAST A VERTICAL TRUNCATED CONE

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.22

    Abstract In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF SLIP INFLUENCE ON ELECTRIC CONDUCTING VISCOELASTIC FLUID PAST AN ISOTHERMAL CYLINDER

    CH. Amanullaa,b,*, N. Nagendrab , M. Suryanarayana Reddyc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-13, 2018, DOI:10.5098/hmt.10.10

    Abstract The present study deals with the computational analysis on an electrically conducting magneto viscoelastic fluid over a circular cylinder. Prescribed partial slip effects are also taken into account. The governing physical problem is tackled numerically by using the highly efficient and reliable Keller box algorithm. Impact of sundry physical parameters on physical quantities of interest are evaluated. The influence of Williamson viscoelastic fluid parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on thermos-fluid characteristics are studied graphically. The model is relevant to the simulation of magnetic polymer materials processing. More >

Displaying 1-10 on page 1 of 2. Per Page