Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL

    Andrés Zapataa , Carlos Amarisb,*, Alexis Sagastumea, Andrés Rodrígueza

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.33

    Abstract The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set corresponds to an absorption chiller driven by low-temperature heat sources such as solar energy in warm environments. Results evidenced that the Volume of Fluid and Mixture models are adequate to be used in the CFD model to predict the absorption process in the bubble absorber assessed depending on the mesh density refinement. Moreover, the heat… More >

  • Open Access

    ARTICLE

    Study on Buildings CCHP System Based on SOFC

    Bin Zhang*, Yongzhen Wang, Jiaqing Zheng, Dan Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 665-674, 2020, DOI:10.32604/fdmp.2020.09314

    Abstract The relationship among the working temperature, pressure and current density of a Solid oxide fuel cell (SOFC) and its output power and efficiency are analyzed in the framework of a theoretical model able to provide, among other things, the volt ampere characteristic curve. In particular, following the principle of temperature matching and cascade utilization, we consider a gas turbine (GT) and a LiBr absorption chiller to recycle the high-grade exhaust heat produced by the considered SOFC. This distributed total energy system is set up with the intent to meet typical needs of buildings for cooling, heating and power (CCHP). The… More >

Displaying 1-10 on page 1 of 2. Per Page