Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ABSTRACT

    Finite Element Modelling Predicts Large Accommodation Induced Optic Nerve Head Deformations

    Xiaofei Wang1,2,*, Yubo Fan1,2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 112-112, 2019, DOI:10.32604/mcb.2019.07053

    Abstract Accommodation is the ability of the eye to adjust its lens thickness to alter the refractive power through the contraction of ciliary muscles. The loss of accommodation ability due to aging leads to presbyopia, a condition in which the eye is unable to focus on near objects. Glaucoma is a disease that vision is impaired due to damage of the retinal ganglion cell at the optic nerve head (ONH) region, which is the leading cause of irreversible blindness worldwide. The biomechanical theory of glaucoma suggests that the deformations of ONH tissues could (directly or indirectly) drive retinal ganglion cell death.… More >

  • Open Access

    ARTICLE

    Molecule Dynamics Study on Heat Transfer at Gas-Nanoparticle Interface

    ZichunYang1, Gaohui Su1,2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 43-62, 2016, DOI:10.3970/cmc.2016.051.043

    Abstract The molecular dynamics (MD) simulations were used to understand the heat transfer process between the gas phase and the solid skeleton in the nanoporous silica aerogels. The amorphous silica nanoparticles were generated by the MD simulations and the energy accommodation coefficient (EAC) between the gases and the nanoparticles was calculated based on the results of the nonequilibrium molecular dynamics (NEMD) simulations. The apparent thermal conductivity (ATC) of the gases between the heat source and heat sink was also obtained. The effects of the temperature, the particle diameter and the molecule type on the EAC and the ATC were investigated. The… More >

Displaying 1-10 on page 1 of 2. Per Page