Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    PROCEEDINGS

    Maximizing Sound Absorption in 3D Printed Lattice Structures

    Xinwei Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.010448

    Abstract Advances in 3D printing have unlocked new opportunities for developing lattice structures tailored for enhanced sound absorption. This work explores methods to maximize sound absorption in microlattice designs by introducing heterogeneity, leveraging dual dissipation mechanisms, and reshaping cavity wall geometries. We present a multilayered Helmholtz resonance (MLHR) analytical model to predict and guide the design of broadband sound-absorbing lattices [1]. Through structural optimization, we demonstrate that heterogeneous microlattices with varying pore and cavity morphologies achieve broadband absorption [2–4], with experimentally validated absorption coefficients exceeding 0.75 across a wide frequency range from 1000 to 6300 Hz.
    Beyond… More >

  • Open Access

    ARTICLE

    Shape Sensitivity Analysis of Acoustic Scattering with Series Expansion Boundary Element Methods

    Fan Li1, Hongxue Liu2, Yongsong Li2, Leilei Chen2, Haojie Lian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2785-2809, 2025, DOI:10.32604/cmes.2025.066001 - 30 June 2025

    Abstract This study explores a sensitivity analysis method based on the boundary element method (BEM) to address the computational complexity in acoustic analysis with ground reflection problems. The advantages of BEM in acoustic simulations and its high computational cost in broadband problems are examined. To improve efficiency, a Taylor series expansion is applied to decouple frequency-dependent terms in BEM. Additionally, the Second-Order Arnoldi (SOAR) model order reduction method is integrated to reduce computational costs and enhance numerical stability. Furthermore, an isogeometric sensitivity boundary integral equation is formulated using the direct differentiation method, incorporating Cauchy principal value More >

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

    Mohamad Firdaus Omar1, Fathilah Ali1,*, Mohammed Saedi Jami1, Azlin Suhaida Azmi1, Farah Ahmad1, Mohd Zahid Marzuki2, Shantha Kumari Muniyandi3, Zuraidah Zainudin4, Minsoo P. Kim5

    Journal of Renewable Materials, Vol.13, No.3, pp. 497-538, 2025, DOI:10.32604/jrm.2024.057248 - 20 March 2025

    Abstract This review provides a comprehensive overview of natural rubber (NR) composites, focusing on their properties, compounding aspects, and renewable practices involving natural fibre reinforcement. The properties of NR are influenced by the compounding process, which incorporates ingredients such as elastomers, vulcanizing agents, accelerators, activators, and fillers like carbon black and silica. While effective in enhancing properties, these fillers lack biodegradability, prompting the exploration of sustainable alternatives. The potential of natural fibres as renewable reinforcements in NR composites is thoroughly covered in this review, highlighting both their advantages, such as improved sustainability, and the challenges they More > Graphic Abstract

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    REVIEW

    Parametric Analysis and Design Considerations for Micro Wind Turbines: A Comprehensive Review

    Dattu Ghane*, Vishnu Wakchaure

    Energy Engineering, Vol.121, No.11, pp. 3199-3220, 2024, DOI:10.32604/ee.2024.050952 - 21 October 2024

    Abstract Wind energy provides a sustainable solution to the ever-increasing demand for energy. Micro-wind turbines offer a promising solution for low-wind speed, decentralized power generation in urban and remote areas. Earlier researchers have explored the design, development, and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation. Researchers have investigated various aspects such as aerodynamic considerations, structural integrity, efficiency optimization to ensure reliable and cost-effective operation, blade design, generator selection, and control strategies to enhance the overall performance of the system. The objective of this paper is to provide a comprehensive design… More >

  • Open Access

    ARTICLE

    High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks, Vortices and Sound Waves in Materials Science Problems

    Zhenhua Jiang1,*, Xi Deng2,3, Xin Zhang1, Chao Yan1, Feng Xiao4, Jian Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2183-2204, 2024, DOI:10.32604/fdmp.2024.053231 - 23 September 2024

    Abstract Shock waves, characterized by abrupt changes in pressure, temperature, and density, play a significant role in various materials science processes involving fluids. These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques. Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales. This work suggests a high-order discontinuous Galerkin (DG) method with a finite volume (FV) subcell limiting strategies to achieve better subcell resolution and lower numerical More >

  • Open Access

    ARTICLE

    A Subdivision-Based Combined Shape and Topology Optimization in Acoustics

    Chuang Lu1, Leilei Chen2,3, Jinling Luo4, Haibo Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 847-872, 2024, DOI:10.32604/cmes.2023.044446 - 30 December 2023

    Abstract We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces. The existing structural optimization methods mainly contain shape and topology schemes, with the former changing the surface geometric profile of the structure and the latter changing the material distribution topology or hole topology of the structure. In the present acoustic performance optimization, the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure, the artificial density of the sound… More >

  • Open Access

    PROCEEDINGS

    A 1-D Non-Local Metasurface-Based Broadband Acoustic Diffuser

    Zhuoma Wang1, Ruoyan Li2,3, Wenjing Ye2,*, Yijun Liu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09236

    Abstract An acoustic diffuser refers to a device that spreads sound energy uniformly in all directions. Such a device plays a very important role in architectural acoustics, i.e., concert halls and auditoriums. Many designs such as the wellknown Schroeder diffusers [1] have been proposed and developed throughout the past several decades. However, most of these conventional designs achieve uniform sound diffusion by using different air trenches to create a phase shift profile following a specific sequence such as maximum length sequence or quadratic residue sequence derived from the number theory [1,2]. As such, these diffusers have… More >

  • Open Access

    TUTORIAL

    Loss Factors and their Effect on Resonance Peaks in Mechanical Systems

    Roman Vinokur*

    Sound & Vibration, Vol.57, pp. 1-13, 2023, DOI:10.32604/sv.2023.041784 - 26 July 2023

    Abstract The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical systems are reviewed for acoustic, vibration, and vibration fatigue applications. The main trends and relationships were obtained for linear mechanical models with hysteresis damping. The well-known features (complex module of elasticity, total loss factor, etc.) are clarified for practical engineers and students, and new results are presented (in particular, for 2-DOF in-series models with hysteresis friction). The results are of both educational and practical interest and may be applied for NVH analysis and testing, mechanical and aeromechanical design, More >

  • Open Access

    ARTICLE

    Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method

    Yi Sun1,2,*, Chihua Lu1,2, Zhien Liu1,2, Menglei Sun1, Hao Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2307-2330, 2023, DOI:10.32604/cmes.2023.025313 - 23 November 2022

    Abstract In automotive industries, panel acoustic contribution analysis (PACA) is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest. Currently, PACA is implemented mostly by either experiment-based methods or traditional numerical methods. However, these schemes are effort-consuming and inefficient in solving engineering problems, thereby restraining the further development of PACA in automotive acoustics. In this work, we propose a PACA scheme using discontinuous isogeometric boundary element method (IGABEM) to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body… More >

Displaying 1-10 on page 1 of 36. Per Page