Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Lightweight Classroom Student Action Recognition Method Based on Spatiotemporal Multimodal Feature Fusion

    Shaodong Zou1, Di Wu1, Jianhou Gan1,2,*, Juxiang Zhou1,2, Jiatian Mei1,2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1101-1116, 2025, DOI:10.32604/cmc.2025.061376 - 26 March 2025

    Abstract The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos, providing a foundation for realizing intelligent and accurate teaching. However, the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition. In this research article, with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios, a lightweight multi-modal fusion action recognition approach is put forward. This proposed method is capable of enhancing the… More >

  • Open Access

    ARTICLE

    Skeleton-Based Action Recognition Using Graph Convolutional Network with Pose Correction and Channel Topology Refinement

    Yuxin Gao1, Xiaodong Duan2,3, Qiguo Dai2,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 701-718, 2025, DOI:10.32604/cmc.2025.060137 - 26 March 2025

    Abstract Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved excellent performance in previous studies. However, most current skeleton-based action recognition using GCN methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based human action… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open Access

    ARTICLE

    Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization

    Ahmad Yahiya Ahmad Bani Ahmad1, Jafar Alzubi2, Sophers James3, Vincent Omollo Nyangaresi4,5,*, Chanthirasekaran Kutralakani6, Anguraju Krishnan7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4791-4812, 2024, DOI:10.32604/cmc.2024.052771 - 12 September 2024

    Abstract In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions. Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore, an updated HAR model is… More >

  • Open Access

    ARTICLE

    Abnormal Action Recognition with Lightweight Pose Estimation Network in Electric Power Training Scene

    Yunfeng Cai1, Ran Qin1, Jin Tang1, Long Zhang1, Xiaotian Bi1, Qing Yang2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4979-4994, 2024, DOI:10.32604/cmc.2024.050435 - 20 June 2024

    Abstract Electric power training is essential for ensuring the safety and reliability of the system. In this study, we introduce a novel Abnormal Action Recognition (AAR) system that utilizes a Lightweight Pose Estimation Network (LPEN) to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios. The LPEN network, comprising three stages—MobileNet, Initial Stage, and Refinement Stage—is employed to swiftly extract image features, detect human key points, and refine them for accurate analysis. Subsequently, a Pose-aware Action Analysis Module (PAAM) captures the positional coordinates of human skeletal points in each frame. Finally, More >

  • Open Access

    ARTICLE

    Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network

    Arnab Dey1,*, Samit Biswas1, Dac-Nhuong Le2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3067-3087, 2024, DOI:10.32604/cmc.2024.049512 - 15 May 2024

    Abstract Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers the likelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in video streams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enable instant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing action datasets often lack diversity and specificity for workout actions, hindering the development of accurate recognition models. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significant… More >

  • Open Access

    ARTICLE

    HgaNets: Fusion of Visual Data and Skeletal Heatmap for Human Gesture Action Recognition

    Wuyan Liang1, Xiaolong Xu2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1089-1103, 2024, DOI:10.32604/cmc.2024.047861 - 25 April 2024

    Abstract Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual and skeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data, failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility to efficiently process both uniform and disparate input patterns. Thus, in this paper, an attention-enhanced pseudo-3D residual model is proposed to address the GAR problem, called HgaNets. This model comprises two independent components designed for modeling visual RGB (red, green and blue) images and 3D skeletal heatmaps, respectively. More… More >

  • Open Access

    ARTICLE

    BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues

    Yunhe Wang1, Yuxin Xia2, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4489-4507, 2024, DOI:10.32604/cmc.2024.048813 - 26 March 2024

    Abstract In recent years, skeleton-based action recognition has made great achievements in Computer Vision. A graph convolutional network (GCN) is effective for action recognition, modelling the human skeleton as a spatio-temporal graph. Most GCNs define the graph topology by physical relations of the human joints. However, this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs, resulting in a low recognition rate for specific actions with implicit correlation between joint pairs. In addition, existing methods ignore the trend correlation between adjacent frames within an action… More >

Displaying 1-10 on page 1 of 42. Per Page