Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Configuration and Operation Optimization of Active Distribution Network Based on Wind-Solar-Hydrogen-Storage Integration

    Hongsheng Su1, Wenyao Su1, Yulong Che1,*, Xiping Ma2, Tian Zhao1, Limiao Ren1

    Energy Engineering, Vol.122, No.11, pp. 4777-4797, 2025, DOI:10.32604/ee.2025.068134 - 27 October 2025

    Abstract Aiming at the issues of insufficient carrying capacity, limited flexibility, and weak source-network-load-storage coordination capability in distribution networks under the background of high-proportion new energy integration. This study proposes a bi-level optimization model for ADN integrating hybrid wind-solar-hydrogen-storage systems. First, an electro-hydrogen coupling system framework is constructed, including models for electrolytic hydrogen production, hydrogen storage, and fuel cells. Meanwhile, typical scenarios of wind-solar joint output are developed using Copula functions to characterize the variability of renewable energy generation. Second, a bi-level optimization model for ADN with electrolytic hydrogen production and storage systems is established: the… More >

  • Open Access

    ARTICLE

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

    Xin Zhang1,*, Shixing Zhang1, Lina Chen2, Jihong Zhang1, Peihong Yang1, Zilei Zhang1, Xiaoming Zhang1

    Energy Engineering, Vol.122, No.9, pp. 3647-3679, 2025, DOI:10.32604/ee.2025.067035 - 26 August 2025

    Abstract A park hydrogen-doped integrated energy system (PHIES) can maximize energy utilization as a system with multiple supplies. To realize win-win cooperation between the PHIES and active distribution network (ADN), the cooperative operation problem of multi-PHIES connected to the same ADN is studied. A low-carbon hybrid game coordination strategy for multi-PHIES accessing ADN based on dynamic carbon base price is proposed in the paper. Firstly, multi-PHIES are constructed to form a PHIES alliance, including a hydrogen-doped gas turbine (HGT), hydrogen-doped gas boiler (HGB), power to gas and carbon capture system (P2G-CCS), and other equipment. Secondly, a… More > Graphic Abstract

    Low-Carbon Game Synergistic Strategy for Multi-Park Hydrogen-Doped Integrated Energy System Accessing to Active Distribution Network Based on Dynamic Carbon Baseline Price

  • Open Access

    ARTICLE

    Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles

    Chenxu Wang*, Jing Bian, Rui Yuan

    Energy Engineering, Vol.122, No.3, pp. 985-1003, 2025, DOI:10.32604/ee.2025.059559 - 07 March 2025

    Abstract Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load, a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed. Firstly, the k-medoids clustering algorithm is used to divide the reduced power scene into periods. Then, the discrete variables and continuous variables are optimized in the same period of time. Finally, the number of input groups of parallel capacitor banks (CB) in multiple periods is fixed, and then the secondary static reactive power optimization correction is carried out by… More >

  • Open Access

    ARTICLE

    Two-Stage Scheduling Model for Flexible Resources in Active Distribution Networks Based on Probabilistic Risk Perception

    Yukai Li1,*, Ruixue Zhang1, Yongfeng Ni1, Hongkai Qiu1, Yuning Zhang2, Chunming Liu2

    Energy Engineering, Vol.122, No.2, pp. 681-707, 2025, DOI:10.32604/ee.2024.058981 - 31 January 2025

    Abstract Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network (ADN) and the difficulty of security assessment of distribution network, this paper proposes a two-phase scheduling model for flexible resources in ADN based on probabilistic risk perception. First, a full-cycle probabilistic trend sequence is constructed based on the source-load historical data, and in the day-ahead scheduling phase, the response interval of the flexibility resources on the load and storage side is optimized based on the probabilistic trend, with the probability of the security boundary as the security constraint, and with… More >

  • Open Access

    REVIEW

    A Critical Review of Active Distribution Network Reconfiguration: Concepts, Development, and Perspectives

    Bo Yang1, Rui Zhang1, Jie Zhang2, Xianlong Cheng2, Jiale Li3, Yimin Zhou1, Yuanweiji Hu1, Bin He1, Gongshuai Zhang4, Xiuping Du4, Si Ji5, Yiyan Sang6, Zhengxun Guo7,8,*

    Energy Engineering, Vol.121, No.12, pp. 3487-3547, 2024, DOI:10.32604/ee.2024.054662 - 22 November 2024

    Abstract In recent years, the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex. Consequently, a large number of active distribution network reconfiguration techniques have emerged to reduce system losses, improve system safety, and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network. While scholars have previously reviewed these methods, they all have obvious shortcomings, such as a lack of systematic integration of methods, vague classification, lack of constructive suggestions for future study, etc. Therefore, this… More >

  • Open Access

    ARTICLE

    Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource

    Guobin He*, Rui Su, Jinxin Yang, Yuanping Huang, Huanlin Chen, Donghui Zhang, Cangtao Yang, Wenwen Li

    Energy Engineering, Vol.120, No.9, pp. 2133-2154, 2023, DOI:10.32604/ee.2023.029007 - 03 August 2023

    Abstract In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization, multi-resource penetration in active distribution networks has been advancing fiercely. In particular, distributed generation (DG) based on renewable energy is critical for active distribution network operation enhancement. To comprehensively analyze the accessing impact of DG in distribution networks from various parts, this paper establishes an optimal DG location and sizing planning model based on active power losses, voltage profile, pollution emissions, and the economics of DG costs as well as meteorological conditions. Subsequently, multi-objective particle swarm optimization (MOPSO) is… More >

  • Open Access

    ARTICLE

    Blockchain-Based Power Transaction Method for Active Distribution Network

    Fei Zeng1, Zhinong Wei1, Haiteng Han1,*, Yang Chen2

    Energy Engineering, Vol.120, No.5, pp. 1067-1080, 2023, DOI:10.32604/ee.2023.022479 - 20 February 2023

    Abstract A blockchain-based power transaction method is proposed for Active Distribution Network (ADN), considering the poor security and high cost of a centralized power trading system. Firstly, the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks. Secondly, considering the transaction needs between users and power suppliers in ADN, an energy request mechanism is proposed, and the optimization objective function is designed by integrating cost aware requests and storage aware requests. Finally, the particle swarm optimization algorithm is used for multi-objective optimal search to find the power More >

Displaying 1-10 on page 1 of 7. Per Page