Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Enhancement of Frequency Regulation in AC-Excited Adjustable-Speed Pumped Storage Units during Pumping Operations

    Shuxin Tan1, Wei Yan2, Lei Zhao1, Xianglin Zhang3,*, Ziqiang Man2, Yu Lu2, Teng Liu2, Gaoyue Zhong2, Weiqun Liu2, Linjun Shi3

    Energy Engineering, Vol.122, No.12, pp. 5175-5197, 2025, DOI:10.32604/ee.2025.068692 - 27 November 2025

    Abstract The integration of large-scale renewable energy introduces frequency instability challenges due to inherent intermittency. While doubly-fed pumped storage units (DFPSUs) offer frequency regulation potential in pumping mode, conventional strategies fail to address hydraulic-mechanical coupling dynamics and operational constraints, limiting their effectiveness. This paper presents an innovative primary frequency control strategy for double-fed pumped storage units (DFPSUs) operating in pumping mode, integrating an adaptive parameter calculation method. This method is constrained by operational speed and power limits, addressing key performance factors. A dynamic model that incorporates the reversible pump-turbine characteristics is developed to translate frequency deviations… More >

  • Open Access

    ARTICLE

    Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer

    Mohammad Soleimani Amiri1, Sahbi Boubaker2,3,*, Rizauddin Ramli4,*, Souad Kamel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3113-3133, 2025, DOI:10.32604/cmes.2025.069167 - 30 September 2025

    Abstract Disability is defined as a condition that makes it difficult for a person to perform certain vital activities. In recent years, the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent. However, controlling an exoskeleton for rehabilitation presents challenges due to their non-linear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton. To remedy these problems, this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons, addressing the challenges of nonlinear dynamics and external disturbances. The proposed controller integrated… More >

  • Open Access

    ARTICLE

    Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization

    Chuan Yuan1, Chang Liu2,3, Shijun Chen1, Weiting Xu2,3, Jing Gou1, Ke Xu2,3, Zhengbo Li4,*, Youbo Liu4

    Energy Engineering, Vol.122, No.9, pp. 3573-3593, 2025, DOI:10.32604/ee.2025.067785 - 26 August 2025

    Abstract The increasing penetration of second-life battery energy storage systems (SLBESS) in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries. This paper presents a novel model-free adaptive voltage control-embedded dung beetle-inspired heuristic optimization algorithm for optimal SLBESS capacity configuration and power dispatch. To simultaneously address the computational complexity and ensure system stability, this paper develops a comprehensive bilevel optimization framework. At the upper level, a dung beetle optimization algorithm determines the optimal SLBESS capacity configuration by minimizing total lifecycle costs while incorporating… More >

  • Open Access

    ARTICLE

    Optimum Machine Learning on Gas Extraction and Production for Adaptive Negative Control

    Cheng Cheng*, Xuan-Ping Gong, Xiao-Yu Cheng, Lu Xiao, Xing-Ying Ma

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 1037-1051, 2025, DOI:10.32604/fhmt.2025.065719 - 30 June 2025

    Abstract To overcome the challenges associated with predicting gas extraction performance and mitigating the gradual decline in extraction volume, which adversely impacts gas utilization efficiency in mines, a gas extraction pure volume prediction model was developed using Support Vector Regression (SVR) and Random Forest (RF), with hyperparameters fine-tuned via the Genetic Algorithm (GA). Building upon this, an adaptive control model for gas extraction negative pressure was formulated to maximize the extracted gas volume within the pipeline network, followed by field validation experiments. Experimental results indicate that the GA-SVR model surpasses comparable models in terms of mean… More >

  • Open Access

    ARTICLE

    ESVG Adaptive Control Method for Fast Frequency Support of Wind Farm

    Yong Sun1, Haifeng Zhang1,2, Xiaozhe Song1, Yifu Zhang1,2, Song Gao1,2, Jiayang Zhang3,*

    Energy Engineering, Vol.122, No.5, pp. 1863-1885, 2025, DOI:10.32604/ee.2025.061940 - 25 April 2025

    Abstract Aiming at the problems of large fluctuation of output active power and poor control performance in the process of frequency support of an energy-storage-type static-var-generator (ESVG), the adaptive adjustment control method for its active-loop parameters is used to realize the wind-farm frequency support, which has become the current research hotspot. Taking the ESVG with a supercapacitor on the DC side as the research object, the influence trend of the change of virtual rotation inertia and virtual damping coefficient on its virtual angular velocity and power angle is analyzed. Then, the constraint relationship between the equivalent… More >

  • Open Access

    ARTICLE

    Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods

    Wei Chen, Xin Gao*, Zhanhong Wei, Xusheng Yang, Zhao Li

    Energy Engineering, Vol.122, No.2, pp. 805-821, 2025, DOI:10.32604/ee.2025.059779 - 31 January 2025

    Abstract This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy. This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters. Firstly, the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control. On this basis, a small-world network model that can better adapt to the topology structure of DC microgrids is further constructed. Then, a voltage synchronization analysis method based on the main stability function is proposed, and… More >

  • Open Access

    ARTICLE

    Precision Motion Control of Hydraulic Actuator Using Adaptive Back-Stepping Sliding Mode Controller

    Zhenshuai Wan1,2,*, Longwang Yue2, Yanfeng Wang2, Pu Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1047-1065, 2024, DOI:10.32604/cmes.2024.053773 - 27 September 2024

    Abstract Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances. These unfavorable factors adversely affect the control performance of the hydraulic actuator. Although various control methods have been employed to improve the tracking precision of the dynamic system, optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive. This study presents an adaptive back-stepping sliding mode controller (ABSMC) to enhance the trajectory tracking precision, where the virtual control law is constructed to replace the position error. The adaptive control theory is introduced in More >

  • Open Access

    ARTICLE

    Adaptive Predefined-Time Backstepping Control for Grid Connected Photovoltaic Inverter

    Jiarui Zhang1, Dan Liu2,*, Kan Cao2, Ping Xiong2, Xiaotong Ji3, Yanze Xu1, Yunfei Mu1

    Energy Engineering, Vol.121, No.8, pp. 2065-2083, 2024, DOI:10.32604/ee.2024.050342 - 19 July 2024

    Abstract The system performance of grid-connected photovoltaic (PV) has a serious impact on the grid stability. To improve the control performance and shorten the convergence time, a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic. The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect. To address the “computational explosion problem” in the design process of backstepping control, dynamic surface control is adopted to avoid the analytical calculations of virtual control. The disturbances of the PV system are estimated and More >

  • Open Access

    ARTICLE

    An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator

    Feng Zhao, Jinshuo Zhang*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.2, pp. 339-358, 2024, DOI:10.32604/ee.2023.043082 - 25 January 2024

    Abstract In the DC microgrid, the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power. To address this issue, the application of a virtual synchronous generator (VSG) in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator (AVSG) control strategy for the interface DC/DC converter of the battery in the microgrid. Besides, a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of… More >

Displaying 1-10 on page 1 of 20. Per Page