Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Numerical Analysis of Urban-Rail Vehicle/Tunnel Aerodynamic Interaction

    Haoran Meng1,2,3, Nianxun Li4, Xukui Shen2, Hong Zhang2, Tian Li4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 161-178, 2025, DOI:10.32604/fdmp.2024.055389 - 24 January 2025

    Abstract The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengers and may even cause damage to the train and related tunnel structures. Therefore, controlling the train speed in the tunnel is extremely important. In this study, this problem is investigated numerically in the framework of the standard k-ε two-equation turbulence model. In particular, an eight-car urban rail train passing through a tunnel at different speeds (140, 160, 180 and 200 km/h) is considered. The results show that the maximum aerodynamic drag of the head and tail cars is More >

  • Open Access

    ARTICLE

    Numerical Simulation of Aerodynamic Interaction Effects in Coaxial Compound Helicopters

    Maosheng Wang, Yanyang Wang, Yihua Cao*, Qiang Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1301-1315, 2023, DOI:10.32604/fdmp.2023.023435 - 30 November 2022

    Abstract The so-called coaxial compound helicopter features two rigid coaxial rotors, and possesses high-speed capabilities. Nevertheless, the small separation of the coaxial rotors causes severe aerodynamic interactions, which require careful analysis. In the present work, the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions. While a sliding mesh method is used to deal with the rotating coaxial rotors, the Reynolds-Averaged Navier-Stokes (RANS) equations are solved for the flow field. The Caradonna & Tung (CT) rotor and Harrington-2 coaxial rotor are considered to More >

Displaying 1-10 on page 1 of 2. Per Page