Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,005)
  • Open Access

    ARTICLE

    Facial Image-Based Autism Detection: A Comparative Study of Deep Neural Network Classifiers

    Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 105-126, 2024, DOI:10.32604/cmc.2023.045022

    Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial, particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context. The research involves experimentation with VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In addition, the “Orange” machine learning tool is employed to evaluate classifier performance and automated… More >

  • Open Access

    ARTICLE

    Using MsfNet to Predict the ISUP Grade of Renal Clear Cell Carcinoma in Digital Pathology Images

    Kun Yang1,2,3, Shilong Chang1, Yucheng Wang1, Minghui Wang1, Jiahui Yang1, Shuang Liu1,2,3, Kun Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 393-410, 2024, DOI:10.32604/cmc.2023.044994

    Abstract Clear cell renal cell carcinoma (ccRCC) represents the most frequent form of renal cell carcinoma (RCC), and accurate International Society of Urological Pathology (ISUP) grading is crucial for prognosis and treatment selection. This study presents a new deep network called Multi-scale Fusion Network (MsfNet), which aims to enhance the automatic ISUP grade of ccRCC with digital histopathology pathology images. The MsfNet overcomes the limitations of traditional ResNet50 by multi-scale information fusion and dynamic allocation of channel quantity. The model was trained and tested using 90 Hematoxylin and Eosin (H&E) stained whole slide images (WSIs), which were all cropped into 320… More >

  • Open Access

    ARTICLE

    Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism

    Jinxian Bai, Yao Fan*, Zhiwei Zhao, Lizhi Zheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 999-1025, 2024, DOI:10.32604/cmc.2023.044612

    Abstract Recently, deep learning-based image inpainting methods have made great strides in reconstructing damaged regions. However, these methods often struggle to produce satisfactory results when dealing with missing images with large holes, leading to distortions in the structure and blurring of textures. To address these problems, we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms. The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details. This method divides the inpainting task… More >

  • Open Access

    ARTICLE

    Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability

    Mohamed Abdel-Basset1, Hossam Hawash1, Mohamed Abouhawwash2,3,*, S. S. Askar4, Alshaimaa A. Tantawy1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1171-1187, 2024, DOI:10.32604/cmc.2023.044425

    Abstract The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans. This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis. This paper proposes a novel deep learning approach, called Conformer Network, for explainable discrimination of viral pneumonia depending on the lung Region of Infections (ROI) within a single modality radiographic CT scan. Firstly, an efficient U-shaped transformer network is integrated for lung image segmentation. Then, a robust transfer learning technique is introduced to design a robust feature… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 197-225, 2024, DOI:10.32604/cmc.2023.043943

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to the network structure differences; and… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network (CNN) model named (HVCNNM)… More >

  • Open Access

    ARTICLE

    Image Splicing Forgery Detection Using Feature-Based of Sonine Functions and Deep Features

    Ala’a R. Al-Shamasneh1, Rabha W. Ibrahim2,3,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 795-810, 2024, DOI:10.32604/cmc.2023.042755

    Abstract The growing prevalence of fake images on the Internet and social media makes image integrity verification a crucial research topic. One of the most popular methods for manipulating digital images is image splicing, which involves copying a specific area from one image and pasting it into another. Attempts were made to mitigate the effects of image splicing, which continues to be a significant research challenge. This study proposes a new splicing detection model, combining Sonine functions-derived convex-based features and deep features. Two stages make up the proposed method. The first step entails feature extraction, then classification using the “support vector… More >

  • Open Access

    ARTICLE

    An Innovative Approach Using TKN-Cryptology for Identifying the Replay Assault

    Syeda Wajiha Zahra1, Muhammad Nadeem2, Ali Arshad3,*, Saman Riaz3, Muhammad Abu Bakr4, Ashit Kumar Dutta5, Zaid Alzaid6, Badr Almutairi7, Sultan Almotairi8

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 589-616, 2024, DOI:10.32604/cmc.2023.042386

    Abstract Various organizations store data online rather than on physical servers. As the number of user’s data stored in cloud servers increases, the attack rate to access data from cloud servers also increases. Different researchers worked on different algorithms to protect cloud data from replay attacks. None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack. This study presents the development of a TKN (Text, Key and Name) cryptographic algorithm aimed at protecting data from replay attacks. The program employs distinct ways to encrypt plain text [P], a user-defined Key [K], and a Secret Code… More >

  • Open Access

    ARTICLE

    Weber Law Based Approach for Multi-Class Image Forgery Detection

    Arslan Akram1,3, Javed Rashid2,3,4, Arfan Jaffar1, Fahima Hajjej5, Waseem Iqbal6, Nadeem Sarwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 145-166, 2024, DOI:10.32604/cmc.2023.041074

    Abstract Today’s forensic science introduces a new research area for digital image analysis for multimedia security. So, Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or create misleading publicity by using tempered images. Exiting forgery detection methods can classify only one of the most widely used Copy-Move and splicing forgeries. However, an image can contain one or more types of forgeries. This study has proposed a hybrid method for classifying Copy-Move and splicing images using texture information of images in the spatial domain. Firstly, images are divided into equal… More >

  • Open Access

    ARTICLE

    Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine

    Arslan Akram1,2, Imran Khan1, Javed Rashid2,3, Mubbashar Saddique4,*, Muhammad Idrees4, Yazeed Yasin Ghadi5, Abdulmohsen Algarni6

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1311-1328, 2024, DOI:10.32604/cmc.2023.040512

    Abstract Algorithms for steganography are methods of hiding data transfers in media files. Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information, and these methods have made it feasible to handle a wide range of problems associated with image analysis. Images with little information or low payload are used by information embedding methods, but the goal of all contemporary research is to employ high-payload images for classification. To address the need for both low- and high-payload images, this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to… More >

Displaying 11-20 on page 2 of 3005. Per Page