Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,761)
  • Open Access

    ARTICLE

    Real-Time Prediction Algorithm for Intelligent Edge Networks with Federated Learning-Based Modeling

    Seungwoo Kang1, Seyha Ros1, Inseok Song1, Prohim Tam1, Sa Math2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1967-1983, 2023, DOI:10.32604/cmc.2023.045020

    Abstract Intelligent healthcare networks represent a significant component in digital applications, where the requirements hold within quality-of-service (QoS) reliability and safeguarding privacy. This paper addresses these requirements through the integration of enabler paradigms, including federated learning (FL), cloud/edge computing, software-defined/virtualized networking infrastructure, and converged prediction algorithms. The study focuses on achieving reliability and efficiency in real-time prediction models, which depend on the interaction flows and network topology. In response to these challenges, we introduce a modified version of federated logistic regression (FLR) that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks. To establish… More >

  • Open Access

    ARTICLE

    Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms

    Arsal Javaid1, Areeb Abbas1, Jehangir Arshad1, Mohammad Khalid Imam Rahmani2,*, Sohaib Tahir Chauhdary3, Mujtaba Hussain Jaffery1, Abdulbasid S. Banga2,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1795-1814, 2023, DOI:10.32604/cmc.2023.044140

    Abstract To detect the improper sitting posture of a person sitting on a chair, a posture detection system using machine learning classification has been proposed in this work. The addressed problem correlates to the third Sustainable Development Goal (SDG), ensuring healthy lives and promoting well-being for all ages, as specified by the World Health Organization (WHO). An improper sitting position can be fatal if one sits for a long time in the wrong position, and it can be dangerous for ulcers and lower spine discomfort. This novel study includes a practical implementation of a cushion consisting of a grid of 3… More >

  • Open Access

    ARTICLE

    A Lightweight Road Scene Semantic Segmentation Algorithm

    Jiansheng Peng1,2,*, Qing Yang1, Yaru Hou1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1929-1948, 2023, DOI:10.32604/cmc.2023.043524

    Abstract In recent years, with the continuous deepening of smart city construction, there have been significant changes and improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important practical significance in the fields of automatic driving, transportation planning, and intelligent transportation systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues. The model uses the lightweight backbone network… More >

  • Open Access

    ARTICLE

    DM Code Key Point Detection Algorithm Based on CenterNet

    Wei Wang1, Xinyao Tang2,*, Kai Zhou1, Chunhui Zhao1, Changfa Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1911-1928, 2023, DOI:10.32604/cmc.2023.043233

    Abstract Data Matrix (DM) codes have been widely used in industrial production. The reading of DM code usually includes positioning and decoding. Accurate positioning is a prerequisite for successful decoding. Traditional image processing methods have poor adaptability to pollution and complex backgrounds. Although deep learning-based methods can automatically extract features, the bounding boxes cannot entirely fit the contour of the code. Further image processing methods are required for precise positioning, which will reduce efficiency. Because of the above problems, a CenterNet-based DM code key point detection network is proposed, which can directly obtain the four key points of the DM code.… More >

  • Open Access

    ARTICLE

    Mobile-Deep Based PCB Image Segmentation Algorithm Research

    Lisang Liu1, Chengyang Ke1,*, He Lin2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2443-2461, 2023, DOI:10.32604/cmc.2023.042582

    Abstract Aiming at the problems of inaccurate edge segmentation, the hole phenomenon of segmenting large-scale targets, and the slow segmentation speed of printed circuit boards (PCB) in the image segmentation process, a PCB image segmentation model Mobile-Deep based on DeepLabv3+ semantic segmentation framework is proposed. Firstly, the DeepLabv3+ feature extraction network is replaced by the lightweight model MobileNetv2, which effectively reduces the number of model parameters; secondly, for the problem of positive and negative sample imbalance, a new loss function is composed of Focal Loss combined with Dice Loss to solve the category imbalance and improve the model discriminative ability; in… More >

  • Open Access

    ARTICLE

    Cross-Domain Authentication Scheme Based on Blockchain and Consistent Hash Algorithm for System-Wide Information Management

    Lizhe Zhang1,2,*, Yongqiang Huang2, Jia Nie2, Kenian Wang1,2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1467-1488, 2023, DOI:10.32604/cmc.2023.042305

    Abstract System-wide information management (SWIM) is a complex distributed information transfer and sharing system for the next generation of Air Transportation System (ATS). In response to the growing volume of civil aviation air operations, users accessing different authentication domains in the SWIM system have problems with the validity, security, and privacy of SWIM-shared data. In order to solve these problems, this paper proposes a SWIM cross-domain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication. The scheme uses a consistent hash algorithm with virtual nodes in combination with a… More >

  • Open Access

    ARTICLE

    Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm

    Dazhi Wang*, Pengyi Pan, Bowen Niu

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1535-1555, 2023, DOI:10.32604/cmc.2023.042286

    Abstract The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt back propagation (LMBP) neural network is proposed, aiming at the characteristics of the complex input-output relationship and… More >

  • Open Access

    ARTICLE

    C2Net-YOLOv5: A Bidirectional Res2Net-Based Traffic Sign Detection Algorithm

    Xiujuan Wang1, Yiqi Tian1,*, Kangfeng Zheng2, Chutong Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1949-1965, 2023, DOI:10.32604/cmc.2023.042224

    Abstract Rapid advancement of intelligent transportation systems (ITS) and autonomous driving (AD) have shown the importance of accurate and efficient detection of traffic signs. However, certain drawbacks, such as balancing accuracy and real-time performance, hinder the deployment of traffic sign detection algorithms in ITS and AD domains. In this study, a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed. An enhanced backbone network module, called C2Net, which uses an upgraded bidirectional Res2Net, was introduced to mitigate information loss in the feature extraction process and to achieve information… More >

  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual age 37 ± 05 weeks.… More >

  • Open Access

    ARTICLE

    Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier

    Shabana R. Ziyad1,*, Liyakathunisa2, Eman Aljohani2, I. A. Saeed3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1515-1534, 2023, DOI:10.32604/cmc.2023.040874

    Abstract Autism spectrum disorder (ASD), classified as a developmental disability, is now more common in children than ever. A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection of autism in children. Parents can seek professional help for a better prognosis of the child’s therapy when ASD is diagnosed under five years. This research study aims to develop an automated tool for diagnosing autism in children. The computer-aided diagnosis tool for ASD detection is designed and developed by a novel methodology that includes data acquisition, feature selection, and classification phases. The most deterministic features are… More >

Displaying 1-10 on page 1 of 1761. Per Page