Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,972)
  • Open Access

    ARTICLE

    Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques

    Pawat Chunhachatrachai1,*, Chyi-Yeu Lin1,2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 599-618, 2024, DOI:10.32604/iasc.2024.055385

    Abstract Angle detection is a crucial aspect of industrial automation, ensuring precise alignment and orientation of components in manufacturing processes. Despite the widespread application of computer vision in industrial settings, angle detection remains an underexplored domain, with limited integration into production lines. This paper addresses the need for automated angle detection in industrial environments by presenting a methodology that eliminates training time and higher computation cost on Graphics Processing Unit (GPU) from machine learning in computer vision (e.g., Convolutional Neural Networks (CNN)). Our approach leverages advanced image processing techniques and a strategic combination of algorithms, including More >

  • Open Access

    ARTICLE

    Chase, Pounce, and Escape Optimization Algorithm

    Adel Sabry Eesa*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 697-723, 2024, DOI:10.32604/iasc.2024.053192

    Abstract While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple with the delicate balance between exploration and exploitation, leading to issues such as premature convergence, sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges, this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups, each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima. By incorporating a unique search mechanism that integrates More >

  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance

    V. G. Saranya*, S. Karthik

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 127-150, 2024, DOI:10.32604/cmes.2024.053825

    Abstract Wireless Sensor Networks (WSNs) are a collection of sensor nodes distributed in space and connected through wireless communication. The sensor nodes gather and store data about the real world around them. However, the nodes that are dependent on batteries will ultimately suffer an energy loss with time, which affects the lifetime of the network. This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability. The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization (MFOA-EACO), where the Mayfly Optimization Algorithm (MFOA) is used to… More >

  • Open Access

    ARTICLE

    Optimizing Connections: Applied Shortest Path Algorithms for MANETs

    Ibrahim Alameri1,*, Jitka Komarkova2, Tawfik Al-Hadhrami3, Abdulsamad Ebrahim Yahya4, Atef Gharbi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 787-807, 2024, DOI:10.32604/cmes.2024.052107

    Abstract This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks (MANETs) from dynamic topologies that pose great challenges because of the mobility of nodes. The main objective was to delve into and refine the application of the Dijkstra's algorithm in this context, a method conventionally esteemed for its efficiency in static networks. Thus, this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm, considering adaptation to the dynamic network conditions that are typical for MANETs. This paper has shown through detailed algorithmic analysis that Dijkstra’s… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images

    Sonali Das1, Saroja Kumar Rout2, Sujit Kumar Panda1, Pradyumna Kumar Mohapatra3, Abdulaziz S. Almazyad4, Muhammed Basheer Jasser5,6,*, Guojiang Xiong7, Ali Wagdy Mohamed8,9

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 893-916, 2024, DOI:10.32604/cmes.2024.051856

    Abstract In blood or bone marrow, leukemia is a form of cancer. A person with leukemia has an expansion of white blood cells (WBCs). It primarily affects children and rarely affects adults. Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body. Identifying leukemia in the initial stage is vital to providing timely patient care. Medical image-analysis-related approaches grant safer, quicker, and less costly solutions while ignoring the difficulties of these invasive processes. It can be simple to generalize Computer vision (CV)-based and image-processing techniques and eradicate human… More >

  • Open Access

    ARTICLE

    A Microseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA

    Dijun Rao1,2,3,4, Min Huang1,2,3,5, Xiuzhi Shi4, Zhi Yu6,*, Zhengxiang He7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 187-217, 2024, DOI:10.32604/cmes.2024.051402

    Abstract The denoising of microseismic signals is a prerequisite for subsequent analysis and research. In this research, a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm (BWOA) optimized Variational Mode Decomposition (VMD) joint Wavelet Threshold Denoising (WTD) algorithm (BVW) is proposed. The BVW algorithm integrates VMD and WTD, both of which are optimized by BWOA. Specifically, this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited Intrinsic Mode Functions (BLIMFs). Subsequently, these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold… More >

  • Open Access

    ARTICLE

    A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments

    Borja Bordel Sánchez1,*, Ramón Alcarria2, Tomás Robles1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 631-654, 2024, DOI:10.32604/cmes.2024.050349

    Abstract Future 6G communications are envisioned to enable a large catalogue of pioneering applications. These will range from networked Cyber-Physical Systems to edge computing devices, establishing real-time feedback control loops critical for managing Industry 5.0 deployments, digital agriculture systems, and essential infrastructures. The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised. While full automation will enhance industrial efficiency significantly, it concurrently introduces new cyber risks and vulnerabilities. In particular, unattended systems are highly susceptible to trust issues: malicious nodes and false information can be easily introduced into… More >

  • Open Access

    ARTICLE

    Two-Stage Planning of Distributed Power Supply and Energy Storage Capacity Considering Hierarchical Partition Control of Distribution Network with Source-Load-Storage

    Junhui Li1, Yuqing Zhang1, Can Chen2, Xiaoxiao Wang2, Yinchi Shao2, Xingxu Zhu1, Cuiping Li1,*

    Energy Engineering, Vol.121, No.9, pp. 2389-2408, 2024, DOI:10.32604/ee.2024.050239

    Abstract Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network, it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system. This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load. Firstly, an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number… More >

Displaying 1-10 on page 1 of 1972. Per Page