Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (283)
  • Open Access

    ARTICLE

    Unconditionally Stable Convergence with Power Principle-based Time-Integration Schemes

    G. Formica1, F. Milicchio2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.3, pp. 199-220, 2010, DOI:10.3970/cmes.2010.060.199

    Abstract This manuscript introduces a novel sufficient condition for the unconditionally stable convergence of the general class of trapezoidal integrators. Contrary to standard energy-based approaches, this convergence criterion is derived from the power principles, in terms of both balance and dissipation. This result improves the well-known condition of stable convergence based on the energy method, extending its applicative spectrum to a variety of physical problems, whose constitutive prescriptions may be more appropriately characterized by means of evolving field equations. Our treatment, tailored for generalized trapezoidal integrators, addresses both linear and nonlinear problems, extending its applicability to contexts where standard energy-based schemes… More >

  • Open Access

    ARTICLE

    Inverse Solution of a Chromatography Model by means of Evolutionary Computation

    M. Irízar, L. D. Câmara, A. J. Silva Neto, O. Llanes

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.1, pp. 1-14, 2009, DOI:10.3970/cmes.2009.054.001

    Abstract Modeling of Chromatography allows a better understanding and development of new techniques to be applied at industrial level, although it's relatively complex. The models of this process are represented by systems of partial differential equations with non linear parameters difficult to estimate generally, which constitutes an inverse problem. In general there aren't analytical solutions and therefore numerical methods should be used for their direct solutions. Frequently typical boundary conditions are considered, but it's convenient to study different approaches for those. Evolutionary Computation has been used successfully in many problems of diverse areas for searching in complex spaces. Considering previous works… More >

  • Open Access

    ARTICLE

    Cell Cycle Modeling for Budding Yeast with Stochastic Simulation Algorithms

    Tae-Hyuk Ahn1, Layne T. Watson1,2, Yang Cao1,1, Clifford A. Shaffer1, William T. Baumann3

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 27-52, 2009, DOI:10.3970/cmes.2009.051.027

    Abstract For biochemical systems, where some chemical species are represented by small numbers of molecules, discrete and stochastic approaches are more appropriate than continuous and deterministic approaches. The continuous deterministic approach using ordinary differential equations is adequate for understanding the average behavior of cells, while the discrete stochastic approach accurately captures noisy events in the growth-division cycle. Since the emergence of the stochastic simulation algorithm (SSA) by Gillespie, alternative algorithms have been developed whose goal is to improve the computational efficiency of the SSA. This paper explains and empirically compares the performance of some of these SSA alternatives on a realistic… More >

  • Open Access

    ARTICLE

    Numerical Simulation and Natural Computing applied to a Real World Traffic Optimization Case under Stress Conditions:

    M.J. Galán Moreno, J.J. Sánchez Medina, L. Álvarez Álvarez E. Rubio Royo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.3, pp. 191-226, 2009, DOI:10.3970/cmes.2009.050.191

    Abstract Urban traffic is a key factor for the development of a city. There exist many different approaches facing traffic optimization. In our case we have focused on traffic lights optimization. We have designed and tested a new architecture to optimize traffic light cycle times. The purpose of this research is to demonstrate the good performance of our architecture in a congested scenario. We have simulated several congestion situations for a very large real world traffic network - "La Almozara" in Zaragoza, Spain. Our results seem encouraging in this extreme situation. As we increase the load in the network we get… More >

  • Open Access

    ARTICLE

    Variational formulation and Nonsmooth Optimization Algorithms in Elastostatic Contact Problems for Cracked Body

    V.V. Zozulya1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 187-216, 2009, DOI:10.3970/cmes.2009.042.187

    Abstract The mathematical statement for contact problem with unilateral restrictions and friction is done in classical and weak forms. Different variational formulation of unilateral contact problems with friction based on principles of virtual displacements and virtual stresses are considered. Especially boundary variational functionals that are used with boundary integral equations have been established. Nonsmooth optimization algorithms of Udzawa type for solution of unilateral contact problem with friction have been developed. Some theoretical results of existence and uniqueness in elastostatic unilateral contact problem with friction are outlined. More >

  • Open Access

    ARTICLE

    Property Predictions for Packed Columns Using Monte Carlo and Discrete Element Digital Packing Algorithms

    C. Xu1, X. Jia2, R. A. Williams2, E. H. Stitt3, M. Nijemeisland3, S. El-Bachir4, A. J. Sederman4, L. F. Gladden4

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 117-126, 2008, DOI:10.3970/cmes.2008.023.117

    Abstract Existing theories and computer models for packed columns are either incapable of handling complex pellet shapes or based on over-simplified packing geometry. A digital packing algorithm, namely DigiPac, has recently been developed to fill the gap. It is capable of packing of particles of any shapes and sizes in a container of arbitrary geometry, and is a first step towards a practical computational tool for reliable predictions of packed column properties based on the actual pellet shapes. DigiPac can operate in two modes: a Monte Carlo mode in which particles undergo directional diffusive motions; and a Discrete Element mode where… More >

  • Open Access

    ARTICLE

    A Real-Coded Hybrid Genetic Algorithm to Determine Optimal Resin Injection Locations in the Resin Transfer Molding Process

    R. Mathur1, S. G. Advani2, B. K. Fink3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 587-602, 2003, DOI:10.3970/cmes.2003.004.587

    Abstract Real number-coded hybrid genetic algorithms for optimal design of resin injection locations for the resin transfer molding process are evaluated in this paper. Resin transfer molding (RTM) is widely used to manufacture composite parts with material and geometric complexities, especially in automotive and aerospace sectors. The sub-optimal location of the resin injection locations (gates) can leads to the formation of resin starved regions and require long mold fill times, thus affecting the part quality and increasing manufacturing costs. There is a need for automated design algorithms and software that can determine the best gate and vent locations for a composite… More >

  • Open Access

    ARTICLE

    A Conservative Time Integration Scheme for Dynamics of Elasto-damaged Thin Shells

    L. Briseghella1, C. Majorana1, P. Pavan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 273-286, 2003, DOI:10.3970/cmes.2003.004.273

    Abstract Some aspects of the application of a conservative time integration scheme to the non-linear dynamics of elasto-damaged thin shells are presented. The main characteristic of the scheme is to be conservative, in the sense that it allows the time-discrete system to preserve the basic laws of continuum, namely the balance of the linear and angular momenta as well as the fulfilment of the second law of thermodynamic. Here the method is applied to thin shells under large displacements and rotations. The constitutive model adopted is built coupling the linear elastic model of De Saint Venant-Kirchhoff with a scalar damage function… More >

  • Open Access

    ARTICLE

    Solving Rolling Contact Problems Using Boundary Element Method and Mathematical Programming Algorithms

    José A. González, Ramón Abascal1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 141-150, 2000, DOI:10.3970/cmes.2000.001.443

    Abstract In this work an approach to the two-dimensional steady-state rolling contact problem, with and without force transmission, is presented. The problem is solved by the combination of the Boundary Element Method with a formulation of the variational inequalities that govern the problem in the contact area, producing finally a mathematical programming problem. This formulation avoids the direct use of the contact constrains, but it drives to the minimisation of a non-differentiable function, being necessary the use of an specific numerical tool as the modified Newton's method. More >

  • Open Access

    ARTICLE

    An Inverse Boundary Element Method for Determining the Hydraulic Conductivity in Anisotropic Rocks

    R. Mustata1, S. D. Harris2, L. Elliott1, D. Lesnic1, D. B. Ingham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 107-116, 2000, DOI:10.3970/cmes.2000.001.409

    Abstract An inverse boundary element method is developed to characterise the components of the hydraulic conductivity tensor K of anisotropic materials. Surface measurements at exposed boundaries serve as additional input to a Genetic Algorithm (GA) using a modified least squares functional that minimises the difference between observed and BEM-predicted boundary pressure and/or hydraulic flux measurements under current hydraulic conductivity tensor component estimates. More >

Displaying 271-280 on page 28 of 283. Per Page