Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (328)
  • Open Access

    ARTICLE

    Employing a Diversity Control Approach to Optimize Self-Organizing Particle Swarm Optimization Algorithms

    Sung-Jung Hsiao1, Wen-Tsai Sung2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3891-3905, 2025, DOI:10.32604/cmc.2025.060056 - 06 March 2025

    Abstract For optimization algorithms, the most important consideration is their global optimization performance. Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed. For stochastic optimization algorithms based on population search methods, the search speed and solution quality are always contradictory. Suppose that the random range of the group search is larger; in that case, the probability of the algorithm converging to the global optimal solution is also greater, but the search speed will inevitably slow. The smaller… More >

  • Open Access

    REVIEW

    Stochastic Fractal Search: A Decade Comprehensive Review on Its Theory, Variants, and Applications

    Mohammed A. El-Shorbagy1, Anas Bouaouda2,*, Laith Abualigah3,4, Fatma A. Hashim5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2339-2404, 2025, DOI:10.32604/cmes.2025.061028 - 03 March 2025

    Abstract With the rapid advancements in technology and science, optimization theory and algorithms have become increasingly important. A wide range of real-world problems is classified as optimization challenges, and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains, such as machine learning, process control, and engineering design, showcasing their capability to address complex optimization problems. The Stochastic Fractal Search (SFS) algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials. Since its introduction by Hamid Salimi in 2015, SFS has garnered significant attention… More >

  • Open Access

    ARTICLE

    Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Kar Tim Chan1, Arun Kumar Sangaiah2,3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2585-2616, 2025, DOI:10.32604/cmes.2025.060548 - 03 March 2025

    Abstract This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms. The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments. The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency. A novel closed-form expression is also derived for a generalized asymptotic error variance steady state. Steady and convergence analyses are then presented for the synchronization, with frequency adaptations done using least More >

  • Open Access

    REVIEW

    On Optimizing Resource Allocation: A Comparative Review of Resource Allocation Strategies in HetNets

    Jeta Dobruna1,2, Zana Limani Fazliu2,*, Iztok Humar1, Mojca Volk1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2211-2245, 2025, DOI:10.32604/cmes.2025.059541 - 03 March 2025

    Abstract Resource allocation remains a challenging issue in communication networks, and its complexity is continuously increasing with the densification of the networks. With the evolution of new wireless technologies such as Fifth Generation (5G) and Sixth Generation (6G) mobile networks, the service level requirements have become stricter and more heterogeneous depending on the use case. In this paper, we review a large body of literature on various resource allocation schemes that are used in particular in mobile wireless communication networks and compare the proposed schemes in terms of performance indicators as well as techniques used. Our… More >

  • Open Access

    REVIEW

    Particle Swarm Optimization: Advances, Applications, and Experimental Insights

    Laith Abualigah*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1539-1592, 2025, DOI:10.32604/cmc.2025.060765 - 17 February 2025

    Abstract Particle Swarm Optimization (PSO) has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields. This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications, but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms. Covering six strategic areas, which include Data Mining, Machine Learning, Engineering Design, Energy Systems, Healthcare, and Robotics, the study demonstrates the versatility and effectiveness of the PSO. Experimental results are, however, used to show the strong and More >

  • Open Access

    REVIEW

    Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis

    Robertas Damasevicius*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1493-1538, 2025, DOI:10.32604/cmc.2024.057431 - 17 February 2025

    Abstract Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering, economics, and computer science. These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions. While heuristic optimization algorithms vary in their specific details, they often exhibit common patterns that are essential to their effectiveness. This paper aims to analyze and explore common patterns in heuristic optimization algorithms. Through a comprehensive review of the literature, we identify the patterns that are commonly observed in these algorithms, including… More >

  • Open Access

    REVIEW

    Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms

    Mohamad Khairulamirin Md Razali1,*, Masri Ayob2, Abdul Hadi Abd Rahman2, Razman Jarmin3, Chian Yong Liu3, Muhammad Maaya3, Azarinah Izaham3, Graham Kendall4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1233-1288, 2025, DOI:10.32604/cmes.2025.060481 - 27 January 2025

    Abstract The Cross-domain Heuristic Search Challenge (CHeSC) is a competition focused on creating efficient search algorithms adaptable to diverse problem domains. Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process. Numerous selection hyper-heuristics have different implementation strategies. However, comparisons between them are lacking in the literature, and previous works have not highlighted the beneficial and detrimental implementation methods of different components. The question is how to effectively employ them to produce an efficient search heuristic. Furthermore, the algorithms that competed in the inaugural CHeSC have not been collectively reviewed. This… More >

  • Open Access

    ARTICLE

    Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems

    Miloš Sedak*, Maja Rosić, Božidar Rosić

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2111-2145, 2025, DOI:10.32604/cmes.2025.059319 - 27 January 2025

    Abstract This paper introduces a hybrid multi-objective optimization algorithm, designated HMODESFO, which amalgamates the exploratory prowess of Differential Evolution (DE) with the rapid convergence attributes of the Sailfish Optimization (SFO) algorithm. The primary objective is to address multi-objective optimization challenges within mechanical engineering, with a specific emphasis on planetary gearbox optimization. The algorithm is equipped with the ability to dynamically select the optimal mutation operator, contingent upon an adaptive normalized population spacing parameter. The efficacy of HMODESFO has been substantiated through rigorous validation against established industry benchmarks, including a suite of Zitzler-Deb-Thiele (ZDT) and Zeb-Thiele-Laumanns-Zitzler (DTLZ) More >

  • Open Access

    REVIEW

    Control Structures and Algorithms for Force Feedback Bilateral Teleoperation Systems: A Comprehensive Review

    Jiawei Tian1, Yu Zhou1, Lirong Yin2,*, Salman A. AlQahtani3, Minyi Tang4, Siyu Lu4, Ruiyang Wang4, Wenfeng Zheng3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 973-1019, 2025, DOI:10.32604/cmes.2024.057261 - 27 January 2025

    Abstract Force feedback bilateral teleoperation represents a pivotal advancement in control technology, finding widespread application in hazardous material transportation, perilous environments, space and deep-sea exploration, and healthcare domains. This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity. It elucidates the fundamental principles underpinning interaction forces and tactile exchanges, with a specific emphasis on the crucial role of tactile devices. In this review, a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted, utilizing published journal article data as the… More >

  • Open Access

    ARTICLE

    Efficient OpenMP Based Z-curve Encoding and Decoding Algorithms

    Zicheng Zhou1, Shaowen Sun2, Teng Liang3, Mengjuan Li4,*, Fengling Xia5,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1313-1327, 2025, DOI:10.32604/cmc.2024.056880 - 03 January 2025

    Abstract Z-curve’s encoding and decoding algorithms are primely important in many Z-curve-based applications. The bit interleaving algorithm is the current state-of-the-art algorithm for encoding and decoding Z-curve. Although simple, its efficiency is hindered by the step-by-step coordinate shifting and bitwise operations. To tackle this problem, we first propose the efficient encoding algorithm LTFe and the corresponding decoding algorithm LTFd, which adopt two optimization methods to boost the algorithm’s efficiency: 1) we design efficient lookup tables (LT) that convert encoding and decoding operations into table-lookup operations; 2) we design a bit detection mechanism that skips partial order More >

Displaying 1-10 on page 1 of 328. Per Page