Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access


    Audio-Text Multimodal Speech Recognition via Dual-Tower Architecture for Mandarin Air Traffic Control Communications

    Shuting Ge1,2, Jin Ren2,3,*, Yihua Shi4, Yujun Zhang1, Shunzhi Yang2, Jinfeng Yang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3215-3245, 2024, DOI:10.32604/cmc.2023.046746

    Abstract In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal… More >

  • Open Access


    A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment

    Haibo Li*, Yongbo Yu, Zhenbo Zhao, Xiaokang Tang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 653-676, 2024, DOI:10.32604/cmc.2023.046424

    Abstract Accurate forecasting of time series is crucial across various domains. Many prediction tasks rely on effectively segmenting, matching, and time series data alignment. For instance, regardless of time series with the same granularity, segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy. However, these events of varying granularity frequently intersect with each other, which may possess unequal durations. Even minor differences can result in significant errors when matching time series with future trends. Besides, directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead… More >

  • Open Access


    Effects of Alignment and Dislocation on the Impact Mechanical Response of Tandem Nomex Honeycomb

    Y. F. Yin1, X. J. Zhang1,*, Y. X. Lin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-4, 2023, DOI:10.32604/icces.2023.010481

    Abstract 1 Introduction
    Nomex honeycomb is widely used in aerospace field due to its formability and impact resistance. Tandem honeycomb structure is favored for its excellent energy absorption and controllable deformation sequence [1]. Because impact damage is inevitable in the use of sandwich structures, it is necessary to analyze the impact mechanical response of such structures. The research objects include single honeycomb and two layers align honeycomb. First, the drop weight impact test was carried out to compare the mechanical response of double-layer aligned and staggered honeycomb with that of single honeycomb. Then finite element method was used to simulate the… More >

  • Open Access


    Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks

    Jinxi Guo1, Kai Chen1,2, Jiehui Liu1, Yuhao Ma2, Jie Wu2,*, Yaochun Wu2, Xiaofeng Xue3, Jianshen Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2619-2640, 2024, DOI:10.32604/cmes.2023.031360

    Abstract Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation of equipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasing attention and achieved some results. It might lead to insufficient performance for using transfer learning alone and cause misclassification of target samples for domain bias when building deep models to learn domain-invariant features. To address the above problems, a deep discriminative adversarial domain adaptation neural network for the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstly converted into frequency domain… More >

  • Open Access


    Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine

    Feisha Hu1, Qi Wang1,*, Haijian Shao1,2, Shang Gao1, Hualong Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2405-2424, 2023, DOI:10.32604/cmes.2023.026732

    Abstract Unmanned Aerial Vehicles (UAVs) are widely used and meet many demands in military and civilian fields. With the continuous enrichment and extensive expansion of application scenarios, the safety of UAVs is constantly being challenged. To address this challenge, we propose algorithms to detect anomalous data collected from drones to improve drone safety. We deployed a one-class kernel extreme learning machine (OCKELM) to detect anomalies in drone data. By default, OCKELM uses the radial basis (RBF) kernel function as the kernel function of the model. To improve the performance of OCKELM, we choose a Triangular Global Alignment Kernel (TGAK) instead of… More > Graphic Abstract

    Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine

  • Open Access


    Modeling and Analysis of UAV-Assisted Mobile Network with Imperfect Beam Alignment

    Mohamed Amine Ouamri1,2, Reem Alkanhel3,*, Cedric Gueguen1, Manal Abdullah Alohali4, Sherif S. M. Ghoneim5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 453-467, 2023, DOI:10.32604/cmc.2023.031450

    Abstract With the rapid development of emerging 5G and beyond (B5G), Unmanned Aerial Vehicles (UAVs) are increasingly important to improve the performance of dense cellular networks. As a conventional metric, coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment. In recent years, stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems. In this paper, an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed. An assumption was considered that all users are distributed… More >

  • Open Access


    Artificial Fish Swarm for Multi Protein Sequences Alignment in Bioinformatics

    Medhat A. Tawfeek1,2,*, Saad Alanazi1, A. A. Abd El-Aziz3,4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6091-6106, 2022, DOI:10.32604/cmc.2022.028391

    Abstract The alignment operation between many protein sequences or DNA sequences related to the scientific bioinformatics application is very complex. There is a trade-off in the objectives in the existing techniques of Multiple Sequence Alignment (MSA). The techniques that concern with speed ignore accuracy, whereas techniques that concern with accuracy ignore speed. The term alignment means to get the similarity in different sequences with high accuracy. The more growing number of sequences leads to a very complex and complicated problem. Because of the emergence; rapid development; and dependence on gene sequencing, sequence alignment has become important in every biological relationship analysis… More >

  • Open Access


    MSM: A Method of Multi-Neighborhood Sampling Matching for Entity Alignment

    Donglei Lu1, Yundong Sun2, Qinrui Dai2, Xiaofang Li3,*, Dongjie Zhu4, Haiwen Du2, Yansong Wang4, Rongning Qu3, Ning Cao1, Gregory M. P. O’Hare5

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1141-1151, 2022, DOI:10.32604/iasc.2022.020218

    Abstract The heterogeneity of knowledge graphs brings great challenges to entity alignment. In particular, the attributes of network entities in the real world are complex and changeable. The key to solving this problem is to expand the neighborhoods in different ranges and extract the neighborhood information efficiently. Based on this idea, we propose Multi-neighborhood Sampling Matching Network (MSM), a new KG alignment network, aiming at the structural heterogeneity challenge. MSM constructs a multi-neighborhood network representation learning method to learn the KG structure embedding. It then adopts a unique sampling and cosine cross-matching method to solve different sizes of neighborhoods and distinct… More >

  • Open Access


    Cyclic Autoencoder for Multimodal Data Alignment Using Custom Datasets

    Zhenyu Tang1, Jin Liu1,*, Chao Yu1, Y. Ken Wang2

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 37-54, 2021, DOI:10.32604/csse.2021.017230

    Abstract The subtitle recognition under multimodal data fusion in this paper aims to recognize text lines from image and audio data. Most existing multimodal fusion methods tend to be associated with pre-fusion as well as post-fusion, which is not reasonable and difficult to interpret. We believe that fusing images and audio before the decision layer, i.e., intermediate fusion, to take advantage of the complementary multimodal data, will benefit text line recognition. To this end, we propose: (i) a novel cyclic autoencoder based on convolutional neural network. The feature dimensions of the two modal data are aligned under the premise of stabilizing… More >

  • Open Access


    BitmapAligner: Bit-Parallelism String Matching with MapReduce and Hadoop

    Mary Aksa1, Junaid Rashid2,*, Muhammad Wasif Nisar1, Toqeer Mahmood3, Hyuk-Yoon Kwon4, Amir Hussain5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3931-3946, 2021, DOI:10.32604/cmc.2021.016081

    Abstract Advancements in next-generation sequencer (NGS) platforms have improved NGS sequence data production and reduced the cost involved, which has resulted in the production of a large amount of genome data. The downstream analysis of multiple associated sequences has become a bottleneck for the growing genomic data due to storage and space utilization issues in the domain of bioinformatics. The traditional string-matching algorithms are efficient for small sized data sequences and cannot process large amounts of data for downstream analysis. This study proposes a novel bit-parallelism algorithm called BitmapAligner to overcome the issues faced due to a large number of sequences… More >

Displaying 1-10 on page 1 of 27. Per Page