Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access


    Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability

    Wenjun Zhou1,2, Mingzhi Yang1, Qian Peng2, Yong Peng1,*, Kui Wang1, Qiang Xiao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 735-755, 2024, DOI:10.32604/cmes.2024.047258

    Abstract The widespread adoption of aluminum alloy electric buses, known for their energy efficiency and eco-friendliness, faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel. This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries, necessitating robust frame protection. Our study aims to optimize the connectors of aluminum alloy bus frames, emphasizing durability, energy efficiency, and safety. This research delves into Multi-Objective Coordinated Optimization (MCO) techniques for lightweight design in aluminum alloy bus body connectors. Our goal is to enhance lightweighting, reinforce energy absorption,… More >

  • Open Access


    An Experimental Study and Analysis of Different Dielectrics in Electrical Discharge Machining of Al 6063 Alloy


    Journal of Polymer Materials, Vol.36, No.4, pp. 351-369, 2019, DOI:10.32381/JPM.2019.36.04.5

    Abstract Electrical discharge machining is a non-traditional machining processes in which it is based upon thermal and electrical energy source as an interval energy pulse discharge in-between the work piece and tool electrode so as to remove the material. A systematical investigation of melting and vaporising of aluminium to find the output responses such as Material removal rate (MRR), Electrode wear rate (Ra), and Surface finish (EWR) in EDM using two different dielectrics was conducted as experimental work. The working fluids are Polyethylene glycol (PEG 600) and kerosene. It is the hour of need to get the More >

  • Open Access


    Analysis and Optimization of the Electrohydraulic Forming Process of Sinusoidal Corrugation Tubes

    Da Cai, Yinlong Song, Hao Jiang, Guangyao Li, Junjia Cui*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 873-887, 2024, DOI:10.32604/fdmp.2023.025833

    Abstract Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness. They can be produced at room temperature by the electrohydraulic forming process. In the present study, the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed. In particular, the orthogonal experimental design (OED) and central composite design (CCD) methods have been used. Through the range analysis and variance analysis of the experimental data, the influence degree of wire diameter (WD) and discharge energy More >

  • Open Access


    Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm

    Wei Li1,2, Benjian Zou1, Yuxiang Luo2, Ning Yang2, Faye Zhang1,*, Mingshun Jiang1, Lei Jia1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 485-500, 2023, DOI:10.32604/sdhm.2023.025989

    Abstract As a critical structure of aerospace equipment, aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system. In this study, a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft. Firstly, together with numerical simulation, the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed, to establish the damage data. Subsequently, the amplitude-frequency characteristics of impact damage signals are extracted and put… More >

  • Open Access



    R. Rajaramana , L. Anna Gowsalyab,*, R. Velrajc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.23

    Abstract To get accurate results in casting simulations, prediction of interfacial heat transfer coefficient (IHTC) is imperative. In this paper an attempt has been made for estimating IHTC during solidification process of a rectangular aluminium alloy casting in a sand mould. The cast temperature and mould temperature are measured during the experimental process at different time intervals during the process of solidification. Two different inverse methods, namely control volume and Beck’s approach are used to estimate the heat flux and temperature at the mould surface by using the experimentally measured temperatures. In the case of control More >

  • Open Access



    L. Anna Gowsalyaa , P.D. Jeyakumarb,*, R. Rajaramanc,†, R. Velrajd

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.21

    Abstract Solidification of casting is a complex phenomenon which requires accurate input to simulate for real time applications. Interfacial heat transfer coefficient (IHTC) is an important input parameter for the simulation process. The IHTC is varying with respect to time during solidification and the exact value is to be given as input for the accurate simulation of the casting process. In this work an attempt is made to estimate the IHTC during solidification of spherical shaped aluminum alloy component with sand mould. The mould surface heat flux and mould surface temperatures are estimated by inverse control More >

  • Open Access


    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

    Mustafa Sami Abdullatef*, Faten N. Alzubaidi, Anees Al-Tamimi, Yasser Ahmed Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2083-2107, 2023, DOI:10.32604/fdmp.2023.027266

    Abstract The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios (). Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM), a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical and experimental input… More > Graphic Abstract

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

  • Open Access


    A Review of Research on Galvanic Corrosion of Aluminum Alloys

    Huixin Zhu, Mingzhe Leng*, Guofeng Jin*, Heyang Miao

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1907-1923, 2023, DOI:10.32604/fdmp.2023.025416

    Abstract When aluminum alloys are coupled with dissimilar materials, they often act as corrosion anodes and are suscepted to accelerated corrosion. Therefore, deepening our knowledge of such corrosion phenomena, related mechanisms, and elaborating new prediction model is of great theoretical and practical significance. In this paper, such mechanisms are explained from both macroscopic and microscopic points of view by considering several aspects such as the second phase particle type, grain size, and environmental ions. More specifically, different perspectives on such a problem are elaborated, which take into account: the properties of the coupling pair materials, geometrical… More >

  • Open Access


    Aluminum Alloy Fatigue Crack Damage Prediction Based on Lamb Wave-Systematic Resampling Particle Filter Method

    Gaozheng Zhao1, Changchao Liu1, Lingyu Sun1, Ning Yang2, Lei Zhang1, Mingshun Jiang1, Lei Jia1, Qingmei Sui1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 81-96, 2022, DOI:10.32604/sdhm.2022.016905

    Abstract Fatigue crack prediction is a critical aspect of prognostics and health management research. The particle filter algorithm based on Lamb wave is a potential tool to solve the nonlinear and non-Gaussian problems on fatigue growth, and it is widely used to predict the state of fatigue crack. This paper proposes a method of lamb wave-based early fatigue microcrack prediction with the aid of particle filters. With this method, which the changes in signal characteristics under different fatigue crack lengths are analyzed, and the state- and observation-equations of crack extension are established. Furthermore, an experiment is More >

  • Open Access


    A Study on the Relationship between Anodic Oxidation and the Thermal Load on the Aluminum Alloy Piston of a Gasoline Engine

    Huali Guo*, Yi Liang, Zhilong Zhang, Yuanhua Chen

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 57-70, 2022, DOI:10.32604/fdmp.2022.017989

    Abstract In order to analyze the influence of the anodizing process on the thermal load of an aluminum alloy piston, dedicated temperature tests have been carried out using the Hardness Plug method and the results for the anodized piston have been compared with those obtained separately for an original aluminum piston. In addition, numerical simulations have been conducted to analyze the temperature field and thermal stress distribution. Simulations and experiments show that the maximum temperature of the anodized piston is 16.36% and 5.4% smaller than that of the original piston under the condition of maximum torque More >

Displaying 1-10 on page 1 of 18. Per Page