Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    FogQSYM: An Industry 4.0 Analytical Model for Fog Applications

    M. Iyapparaja1, M. Sathish Kumar1, S. Siva Rama Krishnan1, Chiranji Lal Chowdhary1, Byungun Yoon2, Saurabh Singh2, Gi Hwan Cho3,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3163-3178, 2021, DOI:10.32604/cmc.2021.017302 - 24 August 2021

    Abstract Industry 4.0 refers to the fourth evolution of technology development, which strives to connect people to various industries in terms of achieving their expected outcomes efficiently. However, resource management in an Industry 4.0 network is very complex and challenging. To manage and provide suitable resources to each service, we propose a FogQSYM (Fog–-Queuing system) model; it is an analytical model for Fog Applications that helps divide the application into several layers, then enables the sharing of the resources in an effective way according to the availability of memory, bandwidth, and network services. It follows the… More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and… More >

  • Open Access

    ARTICLE

    Analytical Models for Sliding Interfaces Associated with Fibre Fractures or Matrix Cracks

    L. N. McCartney1

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 183-227, 2013, DOI:10.3970/cmc.2013.035.183

    Abstract Analytical stress transfer models are described that enable estimates to be made of the stress and displacement fields that are associated with fibre fractures or matrix cracks in unidirectional fibre reinforced composites. The models represent a clear improvement on popular shear-lag based methodologies. The model takes account of thermal residual stresses, and is based on simplifying assumptions that the axial stress in the fibre is independent of the radial coordinate, and similarly for the matrix. A representation for both the stress and displacement fields is derived that satisfies exactly the equilibrium equations, the required interface… More >

  • Open Access

    ARTICLE

    Experimental and Analytical Studies on Concrete Cylinders Wrapped with Fiber Reinforced Polymer

    Bhashya V.1, Ramesh G.1, Sundar Kumar S.1, Bharatkumar B. H.1, Krishnamoorthy T.S.1, Nagesh R Iyer.1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 47-74, 2011, DOI:10.3970/cmc.2011.025.047

    Abstract Fibre-reinforced polymers (FRPs) are being introduced into a wide variety of civil engineering applications. These materials have been found to be particularly attractive for applications involving the strengthening and rehabilitation of existing reinforced concrete structures. In this paper, experimental investigations and analytical studies on four series of the concrete cylinders wrapped with FRP are presented. First series consist of concrete cylinders wrapped with one layer carbon fiber reinforced polymer (CFRP), second series concrete cylinders wrapped with two layers CFRP, in third series, concrete cylinders were wrapped with one layer glass fiber reinforced polymer (GFRP) and… More >

  • Open Access

    ARTICLE

    An Analytical Model for Explosive Compaction of Powder to Cylindrical Billets through Axial Detonation

    B. Srivathsa1, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 9-24, 2008, DOI:10.3970/cmc.2008.007.009

    Abstract An analytical model, describing an explosive compaction process performed axially on a powder assembly of cylindrical geometry, is discussed. The powder is encapsulated in a cylindrical metal container surrounded by an explosive pad, which is detonated parallel to the major axis of the compact. The pressure generated in the powder is a function of the nature and the thickness of the explosive material as well as the powder characteristics. The model is based on the principle of shock propagation in powder aggregate and, the detonation as well as the refraction wave characteristics of the explosives.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Nonlinear Dynamic Responses of Beams Laminated with Giant Magnetostrictive Actuators

    Haomiao Zhou1,2, Youhe Zhou1,3, Xiaojing Zheng1

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 201-212, 2007, DOI:10.3970/cmc.2007.006.201

    Abstract This paper presents some simulation results of nonlinear dynamic responses for a laminated composite beam embedded by actuators of the giant magnetostrictive material (Terfenol-D) subjected to external magnetic fields, where the giant magnetostrictive materials utilizing the realignment of magnetic moments in response to applied magnetic fields generate nonlinear strains and forces significantly larger than those generated by other smart materials. To utilize the full potential application of the materials in the function and safety designs, e.g., active control of vibrations, the analysis of dynamic responses is requested in the designs as accurately as possible on… More >

  • Open Access

    ARTICLE

    An Analytical Model for Shot-Peening Induced Residual Stresses

    Shengping Shen1, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 75-86, 2006, DOI:10.3970/cmc.2006.004.075

    Abstract To improve the fatigue life of metallic components, especially in aerospace industry, shot peening is widely used. There is a demand for the advancement of numerical algorithms and methodologies for the estimation of residual stresses due to shot peening. This paper describes an analytical model to simulate the shot peening process and to estimate the residual stress field in the surface layer. In this reasonable, convenient, and simple model, no empirical relation is used, and the effects of shot velocity are included. The results of validation of this model against the test data are very More >

Displaying 11-20 on page 2 of 17. Per Page