Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk

    Vaskar Chakma1,*, Md Jaheid Hasan Nerab1, Abdur Rouf1, Abu Sayed2, Hossem Md Saim3, Md. Nournabi Khan3

    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 1-35, 2026, DOI:10.32604/jimh.2026.074347 - 23 January 2026

    Abstract Smoking continues to be a major preventable cause of death worldwide, affecting millions through damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation. We analyzed health screening data from 55,691 individuals, examining various health indicators including body measurements, blood tests, and demographic information. We tested three advanced… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision

    Ginanjar Suwasono Adi1, Samsul Huda2,*, Griffani Megiyanto Rahmatullah3, Dodit Suprianto1, Dinda Qurrota Aini Al-Sefy3, Ivon Sandya Sari Putri4, Lalu Tri Wijaya Nata Kusuma5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068619 - 10 November 2025

    Abstract In the competitive retail industry of the digital era, data-driven insights into gender-specific customer behavior are essential. They support the optimization of store performance, layout design, product placement, and targeted marketing. However, existing computer vision solutions often rely on facial recognition to gather such insights, raising significant privacy and ethical concerns. To address these issues, this paper presents a privacy-preserving customer analytics system through two key strategies. First, we deploy a deep learning framework using YOLOv9s, trained on the RCA-TVGender dataset. Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate More >

  • Open Access

    REVIEW

    A Review of the Evolution of Multi-Objective Evolutionary Algorithms

    Thomas Hanne1,*, Mohammad Jahani Moghaddam2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4203-4236, 2025, DOI:10.32604/cmc.2025.068087 - 23 October 2025

    Abstract Multi-Objective Evolutionary Algorithms (MOEAs) have significantly advanced the domain of Multi-Objective Optimization (MOO), facilitating solutions for complex problems with multiple conflicting objectives. This review explores the historical development of MOEAs, beginning with foundational concepts in multi-objective optimization, basic types of MOEAs, and the evolution of Pareto-based selection and niching methods. Further advancements, including decom-position-based approaches and hybrid algorithms, are discussed. Applications are analyzed in established domains such as engineering and economics, as well as in emerging fields like advanced analytics and machine learning. The significance of MOEAs in addressing real-world problems is emphasized, highlighting their More >

  • Open Access

    ARTICLE

    A Digital Twin Driven IoT Architecture for Enhanced xEV Performance Monitoring

    J. S. V. Siva Kumar1, Mahmad Mustafa2, Sk. M. Unnisha Begum3, Badugu Suresh4, Rajanand Patnaik Narasipuram5,*

    Energy Engineering, Vol.122, No.10, pp. 3891-3904, 2025, DOI:10.32604/ee.2025.070052 - 30 September 2025

    Abstract Electric vehicle (EV) monitoring systems commonly depend on IoT-based sensor measurements to track key performance parameters such as vehicle speed, state of charge (SoC), battery temperature, power consumption, motor RPM, and regenerative braking. While these systems enable real-time data acquisition, they are often hindered by sensor noise, communication delays, and measurement uncertainties, which compromise their reliability for critical decision-making. To overcome these limitations, this study introduces a comparative framework that integrates reference signals, a digital twin model emulating ideal system behavior, and real-time IoT measurements. The digital twin provides a predictive and noise-resilient representation of More >

  • Open Access

    ARTICLE

    SMOTE-Optimized Machine Learning Framework for Predicting Retention in Workforce Development Training

    Abdulaziz Alshahrani*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4067-4090, 2025, DOI:10.32604/cmc.2025.065211 - 23 September 2025

    Abstract High dropout rates in short-term job skills training programs hinder workforce development. This study applies machine learning to predict program completion while addressing class imbalance challenges. A dataset of 6548 records with 24 demographic, educational, program-specific, and employment-related features was analyzed. Data preprocessing involved cleaning, encoding categorical variables, and balancing the dataset using the Synthetic Minority Oversampling Technique (SMOTE), as only 15.9% of participants were dropouts. six machine learning models—Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbors, Naïve Bayes, and XGBoost—were evaluated on both balanced and unbalanced datasets using an 80-20 train-test split. Performance More >

  • Open Access

    REVIEW

    Implementing a Cybersecurity Continuous User Evaluation Program

    Josh McNett1, Jackie McNett2,*

    Journal of Cyber Security, Vol.7, pp. 279-306, 2025, DOI:10.32604/jcs.2025.067514 - 25 July 2025

    Abstract This review explores the implementation and effectiveness of continuous evaluation programs in managing and mitigating insider threats within organizations. Continuous evaluation programs involve the ongoing assessment of individuals’ suitability for access to sensitive information and resources by monitoring their behavior, access patterns, and other indicators in real-time. The review was conducted using a comprehensive search across various academic and professional databases, including IEEE Xplore, SpringerLink, and Google Scholar and papers were selected from a time span of 2015–2023. The review outlines the importance of defining the scope and objectives of such programs, which should include… More >

  • Open Access

    ARTICLE

    Prediction of Assembly Intent for Human-Robot Collaboration Based on Video Analytics and Hidden Markov Model

    Jing Qu1, Yanmei Li1,2, Changrong Liu1, Wen Wang1, Weiping Fu1,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3787-3810, 2025, DOI:10.32604/cmc.2025.065895 - 03 July 2025

    Abstract Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly (HRCA), challenges remain in the robot’s ability to understand and predict human assembly intentions. This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements. We propose a video feature extraction method based on the Temporal Shift Module Network (TSM-ResNet50) to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames. Furthermore, we construct an action recognition and segmentation model based on the Refined-Multi-Scale… More >

  • Open Access

    ARTICLE

    Pitcher Performance Prediction Major League Baseball (MLB) by Temporal Fusion Transformer

    Wonbyung Lee, Jang Hyun Kim*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5393-5412, 2025, DOI:10.32604/cmc.2025.065413 - 19 May 2025

    Abstract Predicting player performance in sports is a critical challenge with significant implications for team success, fan engagement, and financial outcomes. Although, in Major League Baseball (MLB), statistical methodologies such as sabermetrics have been widely used, the dynamic nature of sports makes accurate performance prediction a difficult task. Enhanced forecasts can provide immense value to team managers by aiding strategic player contract and acquisition decisions. This study addresses this challenge by employing the temporal fusion transformer (TFT), an advanced and cutting-edge deep learning model for complex data, to predict pitchers’ earned run average (ERA), a key More >

  • Open Access

    ARTICLE

    Enhanced Kinship Verification through Ear Images: A Comparative Study of CNNs, Attention Mechanisms, and MLP Mixer Models

    Thien-Tan Cao, Huu-Thanh Duong, Viet-Tuan Le, Hau Nguyen Trung, Vinh Truong Hoang, Kiet Tran-Trung*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4373-4391, 2025, DOI:10.32604/cmc.2025.061583 - 19 May 2025

    Abstract Kinship verification is a key biometric recognition task that determines biological relationships based on physical features. Traditional methods predominantly use facial recognition, leveraging established techniques and extensive datasets. However, recent research has highlighted ear recognition as a promising alternative, offering advantages in robustness against variations in facial expressions, aging, and occlusions. Despite its potential, a significant challenge in ear-based kinship verification is the lack of large-scale datasets necessary for training deep learning models effectively. To address this challenge, we introduce the EarKinshipVN dataset, a novel and extensive collection of ear images designed specifically for kinship… More >

Displaying 1-10 on page 1 of 99. Per Page