Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Joint Estimation of Elevation and Azimuth Angles with Triple-Parallel ULAs Using Metaheuristic and Direct Search Methods

    Fawad Zaman1,#, Adeel Iqbal2,#, Bakhtiar Ali1, Abdul Khader Jilani Saudagar3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2535-2550, 2025, DOI:10.32604/cmes.2025.072638 - 26 November 2025

    Abstract Accurate estimation of the Direction-of-Arrival (DoA) of incident plane waves is essential for modern wireless communication, radar, sonar, and localization systems. Precise DoA information enables adaptive beamforming, spatial filtering, and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals. Traditional one-dimensional Uniform Linear Arrays (ULAs) are limited to elevation angle estimation due to geometric constraints, typically within the range [0, π]. To capture full spatial characteristics in environments with multipath and angular spread, joint estimation of both elevation and azimuth angles becomes necessary. However, existing 2D and 3D array geometries… More >

  • Open Access

    ARTICLE

    Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction

    Shaoyong Hong1, Bo Yang2, Yan Chen2, Hao Quan3, Shan Liu4, Minyi Tang5,*, Jiawei Tian6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1091-1112, 2025, DOI:10.32604/cmes.2025.066165 - 31 July 2025

    Abstract 3D medical image reconstruction has significantly enhanced diagnostic accuracy, yet the reliance on densely sampled projection data remains a major limitation in clinical practice. Sparse-angle X-ray imaging, though safer and faster, poses challenges for accurate volumetric reconstruction due to limited spatial information. This study proposes a 3D reconstruction neural network based on adaptive weight fusion (AdapFusionNet) to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images. To address the issue of spatial inconsistency in multi-angle image reconstruction, an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and… More >

  • Open Access

    ARTICLE

    Impact of the Inlet Flow Angle and Outlet Placement on the Indoor Air Quality

    Ikram Mostefa Tounsi1,*, Mustapha Boussoufi1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2603-2616, 2024, DOI:10.32604/fdmp.2024.050641 - 28 October 2024

    Abstract This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality (IAQ), heat, and temperature distribution in mixed convection within a two-dimensional square cavity filled with an air-CO2 mixture. The air-CO2 mixture enters the cavity through two inlet openings positioned at the top wall, which is set at the ambient temperature (TC). Three values of the Reynolds numbers, ranging from 1000 to 2000, are considered, while the Prandtl number is kept constant (Pr = 0.71). The temperature distribution and streamlines are shown for Rayleigh number (Ra) equal to 104, three inlet More >

  • Open Access

    ARTICLE

    Effect of Sweptback Angle of a Delta Wing on Surface Pressure Distribution at Supersonic Mach Numbers

    Shamitha Shetty1,2, Asha Crasta1, Sher Afghan Khan3,*, Abdul Aabid4, Muneer Baig4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2353-2376, 2024, DOI:10.32604/fdmp.2024.051059 - 23 September 2024

    Abstract The purpose of this work is to shed light on the effect of the pivot position on the surface pressure distribution over a 3D wing in different flight conditions. The study is intended to support the design and development of aerospace vehicles where stability analysis, performance optimization, and aircraft design are of primary importance. The following parameters are considered: Mach numbers (M) of 1.3, 1.8, 2.3, 2.8, 3.3, and 3.8, angle of incidence (θ) in the range from 5° to 25°, pivot position from h = 0.2 to 1. The results of the CFD numerical More >

  • Open Access

    ARTICLE

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

    Ayad S. Abedalh*, Sohaib Hassan Mohammed

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 227-243, 2023, DOI:10.32604/fhmt.2023.041777 - 30 November 2023

    Abstract Solar energy, a renewable resource, can be harnessed instead of fossil fuels to generate power and heat. One effective method for converting solar energy into heat is through a solar air heating (SAH) system. The theoretical investigation focused on the thermal performance of various V-groove angles on a corrugated absorber plate. The researchers maintained the exterior dimensions and constraints of the absorber plate while increasing its surface area by using a corrugated absorber surface. For the simulation, three different V-groove angles were employed: 45°, 30°, and 15°. The temperature and air flow rate into the… More > Graphic Abstract

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

  • Open Access

    ARTICLE

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

    Zhuohuan Hu1, Sixian Sun1, Chengwei Yuan1, Yan Cao2, Jiayin Xu1,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 107-123, 2023, DOI:10.32604/fhmt.2023.041837 - 30 November 2023

    Abstract Loop Heat Pipe (LHP) is an efficient two-phase heat transfer device, which can be used in waste heat recovery, electronics cooling, aerospace and other fields. The wick, the core component of LHP, plays an important role in its start-up and operation. In this paper, the wick fabricated by 3D printing technology had uniform and interconnected pores. In the experiment, the position of the parallel vapor removal grooves was always fixed towards the vapor outlet. When the cylindrical wick was placed in the evaporator, the rotation angle relative to its central axis could be changed, thus… More > Graphic Abstract

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

  • Open Access

    ARTICLE

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

    Chunyan Zhang1, Shuaishuai Wang1,2, Yinhu Qiao1,*, Zhiqiang Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2661-2679, 2023, DOI:10.32604/fdmp.2023.028059 - 25 June 2023

    Abstract Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance. The Bézier curve is initially used to fit the curve profile of a NACA2412 airfoil, and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle. The results show that the maximum lift coefficient of the optimized airfoil is 8.33% higher than that of the original airfoil. The maximum lift-to-drag ratio of the optimized airfoil More > Graphic Abstract

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

  • Open Access

    ARTICLE

    Numerical Simulation of the Influence of Water Flow on the Piers of a Bridge for Different Incidence Angles

    Danqing Huang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 845-854, 2023, DOI:10.32604/fdmp.2022.020314 - 29 September 2022

    Abstract A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles. In particular, a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’ surface. The results show that the deflection of the flow is non-monotonic. It first increases and then decreases with an increase in the skew angle. More >

  • Open Access

    ARTICLE

    Modelling of Wideband Concentric Ring Frequency Selective Surface for 5G Devices

    Ankush Kapoor1, Pradeep Kumar2,*, Ranjan Mishra3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 341-361, 2023, DOI:10.32604/cmc.2023.028874 - 22 September 2022

    Abstract Frequency selective surfaces (FSSs) play an important role in wireless systems as these can be used as filters, in isolating the unwanted radiation, in microstrip patch antennas for improving the performance of these antennas and in other 5G applications. The analysis and design of the double concentric ring frequency selective surface (DCRFSS) is presented in this research. In the sub-6 GHz 5G FR1 spectrum, a computational synthesis technique for creating DCRFSS based spatial filters is proposed. The analytical tools presented in this study can be used to gain a better understanding of filtering processes and… More >

  • Open Access

    ARTICLE

    Cooperative Angles-Only Relative Navigation Algorithm for Multi-Spacecraft Formation in Close-Range

    Sha Wang1,2, Chenglong He1, Baichun Gong2,*, Xin Ding2, Yanhua Yuan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 121-134, 2023, DOI:10.32604/cmes.2022.017470 - 24 August 2022

    Abstract As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment, a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed. Firstly, the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame. Secondly, the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between More >

Displaying 1-10 on page 1 of 25. Per Page