Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Evaluation of Explicit-form Fundamental Solutions for Displacements and Stresses in 3D Anisotropic Elastic Solids

    Y. C. Shiah1, C. L. Tan2, V.G. Lee3

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.3, pp. 205-226, 2008, DOI:10.3970/cmes.2008.034.205

    Abstract The main impediment to the development of efficient algorithms for the stress analysis of 3D generally anisotropic elastic solids using the boundary element method (BEM) and the local boundary integral equation (LBIE) meshless method over the years is the complexity of the fundamental solutions and the computational burden to evaluate them. The ability to analytically simplify and reduce them into as explicit a form as possible so that they can be directly computed will offer significant cost savings. In addition, they facilitate easy implementation using existing numerical algorithms with the above-mentioned methods that have been More >

  • Open Access

    ARTICLE

    Green's Function for Multilayers with Interfacial Membrane and Flexural Rigidities1

    B. Yang2, V. K. Tewary3

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 23-32, 2008, DOI:10.3970/cmc.2008.008.023

    Abstract A three-dimensional Green's function for a material system consisting of anisotropic and linearly elastic planar multilayers with interfacial membrane and flexural rigidities has been derived. The Stroh formalism and two-dimensional Fourier transforms are applied to derive the general solution for each homogeneous layer. The Green's function for the multilayers is then solved by imposing the surface boundary condition, the interfacial displacement continuity condition, and the interfacial traction discontinuity condition. The last condition is given by the membrane and bending equilibrium equations of the interphases modeled as Kirchhoff plates. Numerical results that demonstrate the validity and More >

  • Open Access

    ARTICLE

    Numerical Evaluation of T-stress Solutions for Cracks in Plane Anisotropic Bodies

    P.D. Shah1, Ch. Song2, C.L. Tan1, X. Wang1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 225-238, 2006, DOI:10.3970/sdhm.2006.002.225

    Abstract Numerical T-stress solutions in two dimensional anisotropic cracked bodies are very scarce in the literature. Schemes to evaluate this fracture parameter in anisotropy have been reported only fairly recently. Among them are those developed in conjunction with two different computational techniques, namely, the Boundary Element Method (BEM) and the Scaled Boundary Finite-Element Method (SBFEM). This paper provides a review of the respective schemes using these techniques and demonstrates their efficacy with three examples. These examples, which are of engineering importance, involve cracks lying in a homogeneous medium as well as at the interface between dissimilar media. More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated More >

  • Open Access

    ARTICLE

    The MLPG Method for Crack Analysis in Anisotropic Functionally Graded Materials

    J. Sladek1, V. Sladek, Ch.Zhang2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 131-144, 2005, DOI:10.3970/sdhm.2005.001.131

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for crack analysis in two-dimensional (2-d), anisotropic and linear elastic solids with continuously varying material properties. Both quasi-static and transient elastodynamic problems are considered. For time-dependent problems, the Laplace-transform technique is utilized. A unit step function is used as the test function in the local weak-form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The analyzed domain is divided into small subdomains with a circular shape. The moving least-squares (MLS) method is More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity

    J. Sladek1, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.5, pp. 477-490, 2004, DOI:10.3970/cmes.2004.006.477

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the LBIEs are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-d problems. The final form of local integral equations has a More >

Displaying 11-20 on page 2 of 16. Per Page