Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (195)
  • Open Access

    ARTICLE

    Hybrid Runtime Detection of Malicious Containers Using eBPF

    Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2, Seongmin Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074871 - 12 January 2026

    Abstract As containerized environments become increasingly prevalent in cloud-native infrastructures, the need for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The framework simultaneously collects flow-based network… More >

  • Open Access

    ARTICLE

    Enhancing Anomaly Detection with Causal Reasoning and Semantic Guidance

    Weishan Gao1,2, Ye Wang1,2, Xiaoyin Wang1,2, Xiaochuan Jing1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073850 - 12 January 2026

    Abstract In the field of intelligent surveillance, weakly supervised video anomaly detection (WSVAD) has garnered widespread attention as a key technology that identifies anomalous events using only video-level labels. Although multiple instance learning (MIL) has dominated the WSVAD for a long time, its reliance solely on video-level labels without semantic grounding hinders a fine-grained understanding of visually similar yet semantically distinct events. In addition, insufficient temporal modeling obscures causal relationships between events, making anomaly decisions reactive rather than reasoning-based. To overcome the limitations above, this paper proposes an adaptive knowledge-based guidance method that integrates external structured… More >

  • Open Access

    ARTICLE

    Enhancing Ransomware Resilience in Cloud-Based HR Systems through Moving Target Defense

    Jay Barach*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071705 - 09 December 2025

    Abstract Human Resource (HR) operations increasingly rely on cloud-based platforms that provide hiring, payroll, employee management, and compliance services. These systems, typically built on multi-tenant microservice architectures, offer scalability and efficiency but also expand the attack surface for adversaries. Ransomware has emerged as a leading threat in this domain, capable of halting workflows and exposing sensitive employee records. Traditional defenses such as static hardening and signature-based detection often fail to address the dynamic requirements of HR Software as a Service (SaaS), where continuous availability and privacy compliance are critical. This paper presents a Moving Target Defense… More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071012 - 09 December 2025

    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    A Virtual Probe Deployment Method Based on User Behavioral Feature Analysis

    Bing Zhang, Wenqi Shi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.067470 - 09 December 2025

    Abstract To address the challenge of low survival rates and limited data collection efficiency in current virtual probe deployments, which results from anomaly detection mechanisms in location-based service (LBS) applications, this paper proposes a novel virtual probe deployment method based on user behavioral feature analysis. The core idea is to circumvent LBS anomaly detection by mimicking real-user behavior patterns. First, we design an automated data extraction algorithm that recognizes graphical user interface (GUI) elements to collect spatio-temporal behavior data. Then, by analyzing the automatically collected user data, we identify normal users’ spatio-temporal patterns and extract their… More >

  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    ARAE: An Adaptive Robust AutoEncoder for Network Anomaly Detection

    Chunyong Yin, Williams Kyei*

    Journal of Cyber Security, Vol.7, pp. 615-635, 2025, DOI:10.32604/jcs.2025.072740 - 24 December 2025

    Abstract The evolving sophistication of network threats demands anomaly detection methods that are both robust and adaptive. While autoencoders excel at learning normal traffic patterns, they struggle with complex feature interactions and require manual tuning for different environments. We introduce the Adaptive Robust AutoEncoder (ARAE), a novel framework that dynamically balances reconstruction fidelity with latent space regularization through learnable loss weighting. ARAE incorporates multi-head attention to model feature dependencies and fuses multiple anomaly indicators into an adaptive scoring mechanism. Extensive evaluation on four benchmark datasets demonstrates that ARAE significantly outperforms existing autoencoder variants and classical methods, More >

  • Open Access

    ARTICLE

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

    Jeongsu Park1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3913-3948, 2025, DOI:10.32604/cmes.2025.072261 - 23 December 2025

    Abstract Time series anomaly detection is critical in domains such as manufacturing, finance, and cybersecurity. Recent generative AI models, particularly Transformer- and Autoencoder-based architectures, show strong accuracy but their robustness under noisy conditions is less understood. This study evaluates three representative models—AnomalyTransformer, TranAD, and USAD—on the Server Machine Dataset (SMD) and cross-domain benchmarks including the Soil Moisture Active Passive (SMAP) dataset, the Mars Science Laboratory (MSL) dataset, and the Secure Water Treatment (SWaT) testbed. Seven noise settings (five canonical, two mixed) at multiple intensities are tested under fixed clean-data training, with variations in window, stride, and More > Graphic Abstract

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

  • Open Access

    ARTICLE

    HI-XDR: Hybrid Intelligent Framework for Adversarial-Resilient Anomaly Detection and Adaptive Cyber Response

    Abd Rahman Wahid*

    Journal of Cyber Security, Vol.7, pp. 589-614, 2025, DOI:10.32604/jcs.2025.071622 - 11 December 2025

    Abstract The rapid increase in cyber attacks requires accurate, adaptive, and interpretable detection and response mechanisms. Conventional security solutions remain fragmented, leaving gaps that attackers can exploit. This study introduces the HI-XDR (Hybrid Intelligent Extended Detection and Response) framework, which combines network-based Suricata rules and endpoint-based Wazuh rules into a unified dataset containing 45,705 entries encoded into 1058 features. A semantic-aware autoencoder-based anomaly detection module is trained and strengthened through adversarial learning using Projected Gradient Descent, achieving a minimum mean squared error of 0.0015 and detecting 458 anomaly rules at the 99th percentile threshold. A comparative… More >

Displaying 1-10 on page 1 of 195. Per Page