Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques

    Burak Cem Kara1,2,*, Can Eyüpoğlu1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1515-1535, 2023, DOI:10.32604/cmc.2023.040274

    Abstract Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve. Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area. When existing approaches are investigated, one of the most significant difficulties discovered is the presence of outlier data in the datasets. Outlier data has a negative impact on data utility. Furthermore, k-anonymity algorithms, which are commonly used in the literature, do not provide adequate protection against outlier data. In this study, a… More >

  • Open Access

    ARTICLE

    Data De-identification Framework

    Junhyoung Oh1, Kyungho Lee2,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3579-3606, 2023, DOI:10.32604/cmc.2023.031491

    Abstract As technology develops, the amount of information being used has increased a lot. Every company learns big data to provide customized services with its customers. Accordingly, collecting and analyzing data of the data subject has become one of the core competencies of the companies. However, when collecting and using it, the authority of the data subject may be violated. The data often identifies its subject by itself, and even if it is not a personal information that infringes on an individual’s authority, the moment it is connected, it becomes important and sensitive personal information that… More >

  • Open Access

    ARTICLE

    Slicing-Based Enhanced Method for Privacy-Preserving in Publishing Big Data

    Mohammed BinJubier1, Mohd Arfian Ismail1, Abdulghani Ali Ahmed2,*, Ali Safaa Sadiq3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3665-3686, 2022, DOI:10.32604/cmc.2022.024663

    Abstract Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan, conduct, and assess scientific research. However, publishing and processing big data poses a privacy concern related to protecting individuals’ sensitive information while maintaining the usability of the published data. Several anonymization methods, such as slicing and merging, have been designed as solutions to the privacy concerns for publishing big data. However, the major drawback of merging and slicing is the random permutation procedure, which does not always guarantee complete protection against… More >

  • Open Access

    ARTICLE

    Machine Learning Privacy Aware Anonymization Using MapReduce Based Neural Network

    U. Selvi*, S. Pushpa

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1185-1196, 2022, DOI:10.32604/iasc.2022.020164

    Abstract Due to the recent advancement in technologies, a huge amount of data is generated where individual private information needs to be preserved. A proper Anonymization algorithm with increased Data utility is required to protect individual privacy. However, preserving privacy of individuals whileprocessing huge amount of data is a challenging task, as the data contains certain sensitive information. Moreover, scalability issue in handling a large dataset is found in using existing framework. Many an Anonymization algorithm for Big Data have been developed and under research. We propose a method of applying Machine Learning techniques to protect More >

  • Open Access

    ARTICLE

    Research on Privacy Preserving Data Mining

    Pingshui Wang1,*, Tao Chen1,2, Zecheng Wang1

    Journal of Information Hiding and Privacy Protection, Vol.1, No.2, pp. 61-68, 2019, DOI:10.32604/jihpp.2019.05943

    Abstract In recent years, with the explosive development in Internet, data storage and data processing technologies, privacy preservation has been one of the greater concerns in data mining. A number of methods and techniques have been developed for privacy preserving data mining. This paper provided a wide survey of different privacy preserving data mining algorithms and analyzed the representative techniques for privacy preservation. The existing problems and directions for future research are also discussed. More >

Displaying 1-10 on page 1 of 5. Per Page