Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (324)
  • Open Access

    ARTICLE

    Assessment of protein quantification methods in Tetranychus urticae, as a potential tool for resistance detection to pesticides

    Cerna1 E, Y Ochoa2, R Mendoza1, MH Badii3, G Gallegos1, J Landeros1

    Phyton-International Journal of Experimental Botany, Vol.79, pp. 147-152, 2010, DOI:10.32604/phyton.2010.79.147

    Abstract Protein assays were conducted on Tetranychus urticae Koch, as potential resistance detection tools to plaguicides. This is a phytophagous mite that feeds on a large variety of plants. Experiments were carried out using a pesticide susceptible and three field crop strains of T. urticae. Protein was measured by colorimetric assays, using Kit-II from Bio-Rad, with bovine serum albumin (BSA) as standard. Homogenates were prepared using 10, 30, 50, 100, 300, 500 and 800 mites, with 30 replicates each. Linearity was obtained for the standard curve of the different methods, and r2 values ranged from 0.877 to 0.985. The More >

  • Open Access

    ARTICLE

    Efficient Fracture Analysis of 2D Crack Problems by the MVCCI Method

    H. Theilig1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 239-272, 2010, DOI:10.3970/sdhm.2010.006.239

    Abstract The aim of this paper is to give an overview to some problems and solutions of the fracture analysis of 2D structures. It will be shown that the common computer-aided two-dimensional fatigue crack path simulation can be considerably improved in accuracy by using a predictor-corrector procedure in combination with the modified virtual crack closure integral (MVCCI) method. Furthermore the paper presents an improved finite element technique for the calculation of stress intensity factors of mixed mode problems by the MVCCI Method. The procedure is devised to compute the separated strain energy release rates by using the… More >

  • Open Access

    ARTICLE

    Application of GB/T 19426-2004 “Safety Assessment for In-Service Pressure Vessels Containing Defects” to the Long-Distance Oil Pipeline

    Zihua Zhao1, Yu Zhou, Zheng Zhang, Qunpeng Zhong

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 101-112, 2010, DOI:10.3970/sdhm.2010.006.101

    Abstract Annex H"Safety assessment method for straight pressure pipeline with local thinning area" of "Safety assessment for in-service pressure vessels containing defects"(GB/T 19426-2004) is briefly introduced. The maximum allowable hanging (unsupported) length of straight pressure pipeline with a local thinning area (LTA) is then determined by using this assessment method. This is the first time that the assessment method has been applied to the long-distance oil pipeline. As a typical case, we have analyzed a length of straight pressure pipeline with LTA and gave the relationship of maximum allowable unsupported length, operating pressure and the depth More >

  • Open Access

    ARTICLE

    Weight Functions for Structural Integrity Assessment: Method and Applications

    Xue-Ren Wu1

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 77-88, 2010, DOI:10.3970/sdhm.2010.006.077

    Abstract A review of the state-of-the-art is presented on the weight function method for fracture-mechanics-based structural integrity assessment with regard to crack-like defects. The weight function method provides a powerful tool for the determination of key parameters, such as stress intensity factors and crack opening displacements for cracked structural components. For two dimensional (2D) crack problems, weight functions were obtained in closed-form for both centre-and edge-crack configurations. For three dimensional(3D) cases, a combination of the closed-form 2D weight functions and the slice synthesis technique makes it possible for rapid determination of stress intensity factor at any More >

  • Open Access

    ARTICLE

    Assessment of Severe Shot Peening on Surface Characteristics of Al Alloys

    M. Guagliano1,2, S. Bagherifard2, I. Fernandez Parienete3, R. Ghelichi2

    Structural Durability & Health Monitoring, Vol.6, No.1, pp. 31-42, 2010, DOI:10.3970/sdhm.2010.006.031

    Abstract Surface grain refinement is a relatively new process aimed to enhance mechanical material properties. In this study Al7075-T6 bars have been shot peened with parameters (shot speed and treatment duration) much stronger from those of conventional shot peening (SP). Residual stress state and microstructure gradient have been observed by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) and nano indentation tester. Formation of a fine grained layer of material on top surface of the specimens was confirmed by TEM and also XRD measurements. XRD results show significant depth affected both in terms of residual More >

  • Open Access

    ARTICLE

    Assessment of Pressure Waves Generated by Explosive Loading

    D. Kakogiannis1, D. Van Hemelrijck1, J. Wastiels1, S. Palanivelu2, W. Van Paepegem2, J. Vantomme3, A. Kotzakolios4, V. Kostopoulos4

    CMES-Computer Modeling in Engineering & Sciences, Vol.65, No.1, pp. 75-94, 2010, DOI:10.3970/cmes.2010.065.075

    Abstract In the present study the estimation of the blast wave by two types of finite element methods is investigated: Eulerian multi-material modeling and pure Lagrangian. The main goal is to compare and study their ability to predict the clearing effect during blast. Element shape and improvements on the codes are also considered. For the Lagrangian finite element models the load is applied by using an empirical method, deriving from databases, for the time-spatial distribution of the pressure profiles. In the ideal case of the above method the blast load is applied as an equivalent triangular… More >

  • Open Access

    ARTICLE

    Shell-specific Interpolation of Measured 3D Displacements, for Micromechanics-Based Rapid Safety Assessment of Shotcrete Tunnels

    S. Ullah1, B. Pichler1, S. Scheiner1,2, C. Hellmich1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 279-316, 2010, DOI:10.3970/cmes.2010.057.279

    Abstract Point-wise optical measurements of 3D displacement vectors over time are a key input for monitoring shotcrete tunnel shells during construction according to the New Austrian Tunnelling Method (NATM). Aiming at estimation of the stresses prevailing in the highly loaded, hydrating material, we here deal with two different interpolation strategies for reconstructing, from measured displacement vectors, the 3D displacement field histories of the inner surface of the tunnel shell. The first approach considers spatial interpolation of displacement components in a fixed Cartesian base frame, while the second (new) approach refers to displacement components in a moving… More >

  • Open Access

    ARTICLE

    Temperature Sensitivity Assessment of Vibration-based Damage Identification Techniques

    N.H.M. Kamrujjaman Serker1, Zhishen Wu

    Structural Durability & Health Monitoring, Vol.5, No.2, pp. 87-108, 2009, DOI:10.3970/sdhm.2009.005.087

    Abstract This paper presents the study on the temperature sensitivity of some vibration-based damage identification techniques. With the help of a simple supported beam with different damage levels, reliability of these techniques for damage identification in a changing environmental temperature condition was investigated. The temperature effect was considered as the change in modulus of elasticity of the material. The techniques evaluated herein are based on measured modal parameters which use only few mode shapes and/or modal frequencies of the structure that can easily be obtained by dynamic tests. The effect of temperature on identification of different More >

  • Open Access

    ARTICLE

    Uncertainty Analysis for a Particle Model of Granular Chute Flow

    F. Fleissner1, T. Haag2, M. Hanss2, P. Eberhard1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, pp. 181-196, 2009, DOI:10.3970/cmes.2009.052.181

    Abstract In alpine regions human settlements and infrastructure are at risk to be hit by landslides or other types of geological flows. This paper presents a new approach that can aid the design of protective constructions. An uncertainty analysis of the flow around a debris barrier is carried out using a chute flow laboratory model of the actual debris flow. A series of discrete element simulations thereby serves to compare and assess two different barrier designs. In this study, the transformation method of fuzzy arithmetic is used to investigate the influence of epistemically uncertain model parameters. More >

  • Open Access

    ARTICLE

    Computational Framework for Durability Design and Assessment of Reinforced Concrete Structures Exposed to Chloride Environment

    Gang Lin1, Yinghua Liu1,2, Zhihai Xiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 217-252, 2009, DOI:10.3970/cmes.2009.047.217

    Abstract Deterioration of reinforced concrete (RC) structures due to chloride ingress followed by reinforcement corrosion is a serious problem all over the world, therefore prediction of chloride profiles is a key element in evaluating durability and integrity of RC structures exposed to chloride environment. In the present paper, an integrated finite element-based computational framework is developed for predicting service life of RC structures exposed to chloride environment, which takes environment temperature and humidity fluctuations, diffusion and convection, chloride binding, as well as the decay of durability of structures caused by coupled deterioration processes into account. The… More >

Displaying 301-310 on page 31 of 324. Per Page