Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment

    Khaled M. Alalayah1, Fatma S. Alrayes2, Jaber S. Alzahrani3, Khadija M. Alaidarous1, Ibrahim M. Alwayle1, Heba Mohsen4, Ibrahim Abdulrab Ahmed5, Mesfer Al Duhayyim6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3121-3139, 2023, DOI:10.32604/csse.2023.036352

    Abstract With the increased advancements of smart industries, cybersecurity has become a vital growth factor in the success of industrial transformation. The Industrial Internet of Things (IIoT) or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether. In industry 4.0, powerful Intrusion Detection Systems (IDS) play a significant role in ensuring network security. Though various intrusion detection techniques have been developed so far, it is challenging to protect the intricate data of networks. This is because conventional Machine Learning (ML) approaches are inadequate and insufficient to address the demands of dynamic IIoT networks. Further,… More >

  • Open Access


    Multi-Attribute Selection Procedures Based on Regret and Rejoice for the Decision-Maker

    Hanan Abdullah Mengash*, Manel Farouk Ayadi

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2777-2795, 2022, DOI:10.32604/cmc.2022.015434

    Abstract Feelings influence human beings’ decision-making; therefore, incorporation of feeling factors in decision-making is very important. Regret and rejoice are very important emotional feelings that can have a great impact on decision-making if they are considered together. While regret has received most of the attention in related research, rejoice has been less considered even though it can greatly influence people’s preferences in decision-making. Furthermore, systematically incorporating regret and rejoice in the multi-criteria decision-making (MCDM) modeling frameworks for decision-making has received little research attention. In this paper, we introduce a new multi-attribute selection procedure that incorporates both… More >

  • Open Access


    Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier

    M. Govindarajan1,*, V. Chandrasekaran2, S. Anitha3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 851-863, 2022, DOI:10.32604/csse.2022.019298

    Abstract Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time. With the use of mobile devices, communication services generate numerous data for every moment. Given the increasing dense population of data, traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation. A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning (RKLSTM-CTMDSL) model is introduced for traffic prediction with superior accuracy and minimal time consumption. The RKLSTM-CTMDSL model performs attribute selection and classification processes… More >

  • Open Access


    Importance of Features Selection, Attributes Selection, Challenges and Future Directions for Medical Imaging Data: A Review

    Nazish Naheed1, Muhammad Shaheen1, Sajid Ali Khan1, Mohammed Alawairdhi2,*, Muhammad Attique Khan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 315-344, 2020, DOI:10.32604/cmes.2020.011380

    Abstract In the area of pattern recognition and machine learning, features play a key role in prediction. The famous applications of features are medical imaging, image classification, and name a few more. With the exponential growth of information investments in medical data repositories and health service provision, medical institutions are collecting large volumes of data. These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality. On the other hand, this growth also made it difficult to comprehend and utilize data for various purposes. The results of imaging data… More >

Displaying 1-10 on page 1 of 4. Per Page