Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Modeling and Experimental Study for Automotive Dry Clutch Sliding Noise

    Jiali Yu, Zhili Xiang, Defeng Zhang, Yubing Gong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1653-1667, 2022, DOI:10.32604/cmes.2022.019280

    Abstract Automotive dry clutches have been found to produce a low frequency sliding noise in many applications, which challenges the ride comfort of vehicles. In order to study this clutch sliding noise, a detailed finite element model including both a pressure plate assembly and a driven plate assembly was developed. Based on this model, a complex eigenvalue analysis is performed in this research. The effect of several major factors on the clutch sliding noise, such as the coefficient of friction, the clamping force, the geometric imperfection of the friction plate, and the thermal deformation of the pressure plate, were investigated numerically.… More >

  • Open Access

    ARTICLE

    Smart Anti-Pinch Window Simulation Using H-/H Criterion and MOPSO

    Maedeh Mohammadi Azni1, Mohammad Ali Sadrnia1, Shahab S. Band2,*, Zulkefli Bin Mansor3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 215-226, 2022, DOI:10.32604/cmc.2022.023030

    Abstract Automobile power windows are mechanisms that can be opened and shut with the press of a button. Although these windows can comfort the effort of occupancy to move the window, failure to recognize the person's body part at the right time will result in damage and in some cases, loss of that part. An anti-pinch mechanism is an excellent choice to solve this problem, which detects the obstacle in the glass path immediately and moves it down. In this paper, an optimal solution is presented for fault detection of the anti-pinch window system. The anti-pinch makes it possible to detect… More >

  • Open Access

    ARTICLE

    Construction of Design Guidelines for Optimal Automotive Frame Shape Based on Statistical Approach and Mechanical Analysis

    Masanori Honda1,3, Chikara Kawamura1,3, Isamu Kizaki1, Yoichi Miyajima1, Akihiro Takezawa2,*, Mitsuru Kitamura3

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 731-742, 2021, DOI:10.32604/cmes.2021.016181

    Abstract A body frame composed of thin sheet metal is a crucial structure that determines the safety performance of a vehicle. Designing a correct weight and high-performance automotive body is an emerging engineering problem. To improve the performance of the automotive frame, we attempt to reconstruct its design criteria based on statistical and mechanical approaches. At first, a fundamental study on the frame strength is conducted and a cross-sectional shape optimization problem is developed for designing the cross-sectional shape of an automobile frame having a very high mass efficiency for strength. Shape optimization is carried out using the nonlinear finite element… More >

  • Open Access

    ARTICLE

    Optimization of Transducer Location for Novel Non-Intrusive Methodologies of Diagnosis in Diesel Engines

    S. Narayan1,*, M. U. Kaisan2, Shitu Abubakar2, Faisal O. Mahroogi3, Vipul Gupta4

    Sound & Vibration, Vol.55, No.3, pp. 221-234, 2021, DOI:10.32604/sv.2021.016539

    Abstract The health monitoring has been studied to ensure integrity of design of engine structure by detection, quantification, and prediction of damages. Early detection of faults may allow the downtime of maintenance to be rescheduled, thus preventing sudden shutdown of machines. In cylinder pressure developed, vibrations and noise emissions data provide a rich source of information about condition of engines. Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue. The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines. The effects of changing various fuel injection… More >

  • Open Access

    ARTICLE

    Automotive Lighting Systems Based on Luminance/Intensity Grids: A Proposal Based on Real-Time Monitoring and Control for Safer Driving

    Antonio Peña-García1,*, Huchang Liao2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2373-2383, 2021, DOI:10.32604/cmc.2021.013151

    Abstract The requirements for automotive lighting systems, especially the light patterns ensuring driver perception, are based on criteria related to the headlamps, rather than the light perceived by drivers and road users. Consequently, important factors such as pavement reflectance, driver age, or time of night, are largely ignored. Other factors such as presence of other vehicles, vehicle speed and weather conditions are considered by the Adaptive Driving Beam (ADB) and Adaptive Front-lighting System (AFS) respectively, though with no information regarding the visual perception of drivers and other road users. Evidently, it is simpler to simulate and measure the light emitted by… More >

  • Open Access

    ARTICLE

    Modelling Strategy and Parametric Study of Metal Gaskets for Automotive Applications

    Fabio Bruzzone, Cristiana Delprete, Carlo Rosso*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 51-64, 2020, DOI:10.32604/cmes.2020.011023

    Abstract This paper is focused on finite element simulation of cylinder head gaskets. Finite element codes support several methodologies, each of which has its own strengths and weaknesses. One of the key points lies in the influence of the gasket geometry on its final behaviour. Such a contribution can come from the detailed modelling of the gasket or by defining a global non-linear behaviour in which material and geometry non-linearities are summarised. Two approaches were used to simulate the gasket behaviour. The first one consists in using a 2D approach, which allows to model through-thickness non-linear behaviour of gasket. The second… More >

  • Open Access

    ARTICLE

    Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box

    N. S. B. Yusof1,2, S. M. Sapuan1,3,*, M. T. H. Sultan1,4, M. Jawaid1

    Journal of Renewable Materials, Vol.8, No.6, pp. 647-660, 2020, DOI:10.32604/jrm.2020.08309

    Abstract In this study, the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials. This paper introduces an approach consist of technical aspects (T), the economic point of view (E) and availability (A), and it’s also called as TEA requirement. This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage. In this study, the TEA requirement will integrate with the analytical hierarchy process (AHP) to assist decision makers or manufacturing… More >

  • Open Access

    ARTICLE

    Advancements in the Automotive Durability Process

    Mark Pompetzki1, Brian Dabell1, Xiaobin Lin2

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 69-76, 2010, DOI:10.3970/sdhm.2010.006.069

    Abstract Structural integrity in terms of automotive durability is a detailed process that incorporates many technical areas. The current durability process for automotive applications involves understanding operational load inputs, the stresses and strains caused and the response of the material, performing fatigue tests, calculating fatigue life and interpreting results. There are many variations on this process depending on the application, materials, available information, methods, etc. This paper presents a general approach for the durability process in automotive applications and highlights a number of new advancements. These advancements include understanding the service operating load conditions through improved usage based monitoring, characterizing new… More >

  • Open Access

    ABSTRACT

    Transient hydroplaning simulation of automotive tires using the fluid-structure interaction finite element method

    S.T. Jenq1,2, Y.S. Chiu2, Y.C. Ting2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 263-264, 2009, DOI:10.3970/icces.2009.009.263

    Abstract The purpose of this work is to study the transient hydroplaning behavior of inflated pneumatic 195/65R15 radial tires with various tread patterns and the tires were loaded with a quarter car weight. The tires were analyzed numerically to roll over a water film with a thickness of 5 mm, 10 mm and 15 mm on top of a flat-road pavement. Current tire structure contains the outer rubber tread and the inner advanced reinforcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were used to describe the behavior of the large-deformable rubber tread material and reinforcing composite… More >

  • Open Access

    ABSTRACT

    Effect of chamfered brake pad patterns & lining friction coefficients on the vibration squeal response for automotive disc brake system

    En-Cheng Liu1, Syh-Tsang Jenq1,2, Shih-Wei Kung3, Chie Gau1, Hsin-Luen Tsai4, Cheng-Ching Lee5, Yu-Der Chen5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 245-246, 2009, DOI:10.3970/icces.2009.009.245

    Abstract The purpose of the present work is to study the disc brake squeal problem for passenger cars in order to reduce the instable high frequency squeal modes. The ABAQUS/Standard implicit method was used to perform dynamic contact vibration analysis of the current disc brake finite element model. The disc brake system studied here contains the caliper, bracket, brake disc, and brake pad. Notice that brake pad in general contains both brake lining and brake shoe. The brake pad with a specific chamfer pattern and the brake disc with a series of cooling ribs for ventilation were numerically constructed in the… More >

Displaying 11-20 on page 2 of 22. Per Page