Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Revolutionizing Automotive Security: Connected Vehicle Security Blockchain Solutions for Enhancing Physical Flow in the Automotive Supply Chain

    Khadija El Fellah1,*, Ikram El Azami2,*, Adil El Makrani2, Habiba Bouijij3, Oussama El Azzouzy4

    Computer Systems Science and Engineering, Vol.49, pp. 99-122, 2025, DOI:10.32604/csse.2024.057754 - 03 January 2025

    Abstract The rapid growth of the automotive industry has raised significant concerns about the security of connected vehicles and their integrated supply chains, which are increasingly vulnerable to advanced cyber threats. Traditional authentication methods have proven insufficient, exposing systems to risks such as Sybil, Denial of Service (DoS), and Eclipse attacks. This study critically examines the limitations of current security protocols, focusing on authentication and data exchange vulnerabilities, and explores blockchain technology as a potential solution. Blockchain’s decentralized and cryptographically secure framework can significantly enhance Vehicle-to-Vehicle (V2V) communication, ensure data integrity, and enable transparent, immutable transactions More >

  • Open Access

    ARTICLE

    A Comprehensive Analysis of Datasets for Automotive Intrusion Detection Systems

    Seyoung Lee1, Wonsuk Choi1, Insup Kim2, Ganggyu Lee2, Dong Hoon Lee1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3413-3442, 2023, DOI:10.32604/cmc.2023.039583 - 08 October 2023

    Abstract Recently, automotive intrusion detection systems (IDSs) have emerged as promising defense approaches to counter attacks on in-vehicle networks (IVNs). However, the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation. Despite the availability of several datasets for automotive IDSs, there has been a lack of comprehensive analysis focusing on assessing these datasets. This paper aims to address the need for dataset assessment in the context of automotive IDSs. It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs, to evaluate the quality of datasets. These… More >

  • Open Access

    ARTICLE

    FIDS: Filtering-Based Intrusion Detection System for In-Vehicle CAN

    Seungmin Lee, Hyunghoon Kim, Haehyun Cho, Hyo Jin Jo*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2941-2954, 2023, DOI:10.32604/iasc.2023.039992 - 11 September 2023

    Abstract Modern vehicles are equipped with multiple Electronic Control Units (ECUs) that support various convenient driving functions, such as the Advanced Driver Assistance System (ADAS). To enable communication between these ECUs, the Controller Area Network (CAN) protocol is widely used. However, since CAN lacks any security technologies, it is vulnerable to cyber attacks. To address this, researchers have conducted studies on machine learning-based intrusion detection systems (IDSs) for CAN. However, most existing IDSs still have non-negligible detection errors. In this paper, we propose a new filtering-based intrusion detection system (FIDS) to minimize the detection errors of… More >

Displaying 1-10 on page 1 of 3. Per Page