Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach

    Wei Liu1,*, Ruiyang Wang1, Guangwei Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070328 - 09 December 2025

    Abstract Q-learning is a classical reinforcement learning method with broad applicability. It can respond effectively to environmental changes and provide flexible strategies, making it suitable for solving robot path-planning problems. However, Q-learning faces challenges in search and update efficiency. To address these issues, we propose an improved Q-learning (IQL) algorithm. We use an enhanced Ant Colony Optimization (ACO) algorithm to optimize Q-table initialization. We also introduce the UCH mechanism to refine the reward function and overcome the exploration dilemma. The IQL algorithm is extensively tested in three grid environments of different scales. The results validate the… More >

  • Open Access

    ARTICLE

    Improving the Performance of AI Agents for Safe Environmental Navigation

    Miah A. Robinson, Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.7, pp. 615-632, 2025, DOI:10.32604/jai.2025.073535 - 01 December 2025

    Abstract Ensuring the safety of Artificial Intelligence (AI) is essential for providing dependable services, especially in various sectors such as the military, education, healthcare, and automotive industries. A highly effective method to boost the precision and performance of an AI agent involves multi-configuration training, followed by thorough evaluation in a specific setting to gauge performance outcomes. This research thoroughly investigates the design of three AI agents, each configured with a different number of hidden units. The first agent is equipped with 128 hidden units, the second with 256, and the third with 512, all utilizing the… More >

  • Open Access

    ARTICLE

    AI Safety Approach for Minimizing Collisions in Autonomous Navigation

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.5, pp. 1-14, 2023, DOI:10.32604/jai.2023.039786 - 08 August 2023

    Abstract Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions. These systems are developed under the term Artificial Intelligence (AI) safety. AI safety is essential to provide reliable service to consumers in various fields such as military, education, healthcare, and automotive. This paper presents the design of an AI safety algorithm for safe autonomous navigation using Reinforcement Learning (RL). Machine Learning Agents Toolkit (ML-Agents) was used to train the agent with a proximal policy optimizer algorithm with an intrinsic curiosity module (PPO + ICM). This training… More >

Displaying 1-10 on page 1 of 3. Per Page