Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Mechanical Properties and Stress Strain Relationship Models for Bamboo Scrimber

    Haitao Li1,*, Huizhong Zhang1, Zhenyu Qiu1, Jingwen Su2, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Hongzheng Liu5, Chungui Zhou6

    Journal of Renewable Materials, Vol.8, No.1, pp. 13-27, 2020, DOI:10.32604/jrm.2020.09341 - 01 January 2020

    Abstract In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique, a large quantities of experiments have been carried out. Based on the analysis of the test results, the following conclusions can be drawn. Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain. Brittle failure happened for all tensile tests. The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, More >

  • Open Access

    ARTICLE

    Study on Thermal Insulation Performance of Cross-Laminated Bamboo Wall

    Qingfang Lv1,*, Weiyang Wang1, Ye Liu1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1231-1250, 2019, DOI:10.32604/jrm.2019.08345

    Abstract In recent years, bamboo, as a green building material, has attracted more and more attention worldwide. Inspired by the investigation of cross-laminated timber in structural systems, a new engineered cross-laminated bamboo (CLB) consisting of the cross lamination of bamboo scrimber plates is proposed in this paper. To evaluate its potential in structural applications, the thermal insulation performances of the CLB walls and CLB walls with the EPS foam plate were studied and evaluated by the temperature-controlled box-heat flow meter method. Test results indicated that the thermal insulation performance improved with the increase of thickness, but More >

  • Open Access

    ARTICLE

    Extraction, Optical Properties and Bio-Imaging of Fluorescent Composition From Moso Bamboo Shoots

    Jinlai Yang1,2,3, Liangru Wu1,2,3,*, Yanhong Pan1,2,3, Hao Zhong1,2,3

    Journal of Renewable Materials, Vol.7, No.11, pp. 1209-1219, 2019, DOI:10.32604/jrm.2019.07896

    Abstract A novel fluorescent composition was firstly isolated from natural winter fresh Moso bamboo shoots, and its optical properties were fully investigated by fluorescence spectroscopy. It could emit strong blue light both in solid and solution state, providing high fluorescence intensity in ethanol. The solution’s concentration and addition of water greatly affected the fluorescence intensity, high concentration and addition of much water could quench fluorescence. Apoptosis results showed that the fluorescent extract (0-25 mg/L) could not induce apoptosis of Hela cells. Confocal fluorescent microscopic imaging in human hepatocellular carcinoma cells (HepG2) was realized using the fluorescent More >

  • Open Access

    ARTICLE

    Biochar Effectively Reduces Ammonia Volatilization From Nitrogen-Applied Soils in Tea and Bamboo Plantations

    Lei Chu, H. M. K. Darshika Hennayake, Haijun Sun*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 261-267, 2019, DOI:10.32604/phyton.2019.07791

    Abstract Intensive practices in forest soils result in dramatic nitrogen (N) losses, particularly ammonia (NH3) volatilization, to adjacent environmental areas. A soil column experiment was conducted to evaluate the effect of bamboo biochar on NH3 volatilization from tea garden and bamboo forest soils. The results showed that biochar amendment effectively reduced NH3 volatilization from tea garden and bamboo forest soil by 79.2% and 75.5%, respectively. The soil pH values increased by 0.53-0.61 units after biochar application. The NH4+-N and total N of both soils were 13.8-29.7% and 34.0-41.9% higher under the biochar treatments than under the control treatment, More >

  • Open Access

    ARTICLE

    Review on Connections for Original Bamboo Structures

    Chaokun Hong1a,2, Haitao Li1a,2,*, Rodolfo Lorenzo3, Gang Wu1b, Ileana Corbi4, Ottavia Corbi4, Zhenhua Xiong5, Dong Yang1a,2, Huizhong Zhang1a,2

    Journal of Renewable Materials, Vol.7, No.8, pp. 713-730, 2019, DOI:10.32604/jrm.2019.07647

    Abstract Bamboo is a green construction material in line with sustainable development strategies. The use of raw bamboo in architecture has existed since ancient times. In the long development years of original bamboo buildings, many areas in the world gradually formed unique bamboo buildings, which have become an important local cultural feature. For building structures, joints are the key to ensure structural load transfer. Because of hollow and thin-walled material property of bamboo, the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo, which seriously hinders the More >

  • Open Access

    ARTICLE

    Compression Behaviors of Parallel Bamboo Strand Lumber Under Static Loading

    Haitao Li1,2,*, Zhenyu Qiu2, Gang Wu1,*, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Huizhong Zhang1,2, Rong Liu1,2

    Journal of Renewable Materials, Vol.7, No.7, pp. 583-600, 2019, DOI:10.32604/jrm.2019.07592

    Abstract In order to investigate the influence of length and compression directions upon behaviour of parallel bamboo strand lumber (PBSL) specimens, 240 axial compression tests have been performed. With three similar one different typical failure modes, the mechanical performance for PBSL specimens under compression parallel to grain and perpendicular to grain are different as a whole. From the point of the characteristic values, the compression strength parallel to grain is 2.1 times of the compression strength perpendicular to grain. The elastic modulus for compression parallel to grain is 3.64 times of the compression strength perpendicular to… More >

  • Open Access

    ARTICLE

    Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites

    Ahmad Safwan1, Mohammad Jawaid1*, Mohamed T. H. Sultan1,2, Azman Hassan3

    Journal of Renewable Materials, Vol.6, No.5, pp. 529-535, 2018, DOI:10.7569/JRM.2018.634103

    Abstract The application of natural fibers as reinforcement in composite material has increased due to environmental concerns, low cost, degradability and health concerns. The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf (K)/bamboo hybrid composite. There were three types of bamboo fibers evaluated in this study which include bamboo mat (B), bamboo fabric (BF) and bamboo powder (BP). Chemical composition of B, BF, BP and K fibers were analyzed in this study. The effect of different types of bamboo fibers on tensile, impact, and More >

  • Open Access

    ARTICLE

    Energy Release Rate Measurement of Welded Bamboo Joints

    Haiyang Zhang1,*, Qian He1, Xiaoning Lu1, A. Pizzi2,3, Changtong Mei1, Xianxu Zhan4

    Journal of Renewable Materials, Vol.6, No.5, pp. 450-456, 2018, DOI:10.7569/JRM.2017.634180

    Abstract Double cantilever beam tests were used to measure the energy release rates of linear vibrational welded moso bamboo joints. The influence of the length of the preserved cracks, the different combinations of the inner and outer bamboo surfaces and the moisture content is studied herein. The experimental compliance method, which is based on linear elastic fracture mechanics and has been shown to be an ideal method, was used to analyze data with the power equation. The results show that the preserved initial crack length does not have a significant effect on the final measured energy More >

  • Open Access

    ARTICLE

    The Role of Bamboo Nanoparticles in Kenaf Fiber Reinforced Unsaturated Polyester Composites

    Enih Rosamah1, Abdul Khalil H.P.S.2*, S.W. Yap2, Chaturbhuj K. Saurabh2, Paridah M. Tahir3, Rudi Dungani4, Abdulwahab F. Owolabi2

    Journal of Renewable Materials, Vol.6, No.1, pp. 75-86, 2018, DOI:10.7569/JRM.2017.634152

    Abstract In this study, bamboo nanoparticles in concentration ranges from 0–5% were incorporated along with woven/nonwoven kenaf fiber mat into unsaturated polyester and the developed composites were further characterized. Bamboo chips were subjected to ball milling process for the synthesis of nanoparticles with a particle size of 52.92 nm. The effect that the incorporation of nanoparticles had on various properties of reinforced composites was further observed. Due to the high surface area of nanoparticles, incorporation of 3% of nanofillers contributed towards strong bonding and better wettability with matrix, thus resulting in excellent mechanical properties and thermal More >

Displaying 61-70 on page 7 of 72. Per Page