Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Experimental and Theoretical Study on Bonding Properties between Steel Bar and Bamboo Scrimber

    Xiangya Luo, Haiqing Ren, Yong Zhong*

    Journal of Renewable Materials, Vol.8, No.7, pp. 773-787, 2020, DOI:10.32604/jrm.2020.09414

    Abstract To further verify the feasibility of newly designed reinforced bamboo scrimber composite (RBSC) beams used in building construction, the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests. Results indicated that the anti-pulling mechanical properties were signifi- cantly correlated to the diameter, thread form and buried depth of steel bar, forming density of bamboo scrimber as well as the heat treatment of bamboo bundle. There were two failure modes for anti-pulling tests: the tensile fracture and pulling out of steel bar. Both the ultimate load and average shear strength of anti-pulling specimen could be increased greatly… More >

  • Open Access

    ARTICLE

    Bond Performance of Adhesively Bonding Interface of Steel-Bamboo Composite Structure

    Jialiang Zhang1, Zhenwen Zhang2, Keting Tong1, Jianmin Wang2, Yushun Li3,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 687-702, 2020, DOI:10.32604/jrm.2020.09513

    Abstract The steel-bamboo composite structure is a newly developed structure, combining phyllostachys pubescens (also called Moso bamboo) plywood and cold-formed thin-walled steel with structural adhesive. The reliability of steelbamboo interface is the premise of composite effect. 13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test, and the strain difference analysis method was proposed to study the distribution of shear stress. The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood. The shear stress is not evenly distributed along the longitudinal… More >

  • Open Access

    ARTICLE

    Experimental Study on the Creep Behavior of Recombinant Bamboo

    Yang Wei*, Kunpeng Zhao, Chen Hang, Si Chen, Mingmin Ding

    Journal of Renewable Materials, Vol.8, No.3, pp. 251-273, 2020, DOI:10.32604/jrm.2020.08779

    Abstract The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation, which serious effects the service performance of structures. To investigate the creep behavior of recombinant bamboo, twenty-four recombinant bamboo specimens were tested under lasting compressive and tensile loads at different load levels. The typical failure modes of recombinant bamboo under a lasting load at a high load level were buckling failure and brittle fracturing due to creep compressive creep and tensile creep development, respectively. At a high load level, the creep deformation of recombinant bamboo initially develops unsteadily… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Stress Strain Relationship Models for Bamboo Scrimber

    Haitao Li1,*, Huizhong Zhang1, Zhenyu Qiu1, Jingwen Su2, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Hongzheng Liu5, Chungui Zhou6

    Journal of Renewable Materials, Vol.8, No.1, pp. 13-27, 2020, DOI:10.32604/jrm.2020.09341

    Abstract In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique, a large quantities of experiments have been carried out. Based on the analysis of the test results, the following conclusions can be drawn. Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain. Brittle failure happened for all tensile tests. The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain. The failure modes for bamboo… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, and the flexural strength were… More >

  • Open Access

    ARTICLE

    Study on Thermal Insulation Performance of Cross-Laminated Bamboo Wall

    Qingfang Lv1,*, Weiyang Wang1, Ye Liu1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1231-1250, 2019, DOI:10.32604/jrm.2019.08345

    Abstract In recent years, bamboo, as a green building material, has attracted more and more attention worldwide. Inspired by the investigation of cross-laminated timber in structural systems, a new engineered cross-laminated bamboo (CLB) consisting of the cross lamination of bamboo scrimber plates is proposed in this paper. To evaluate its potential in structural applications, the thermal insulation performances of the CLB walls and CLB walls with the EPS foam plate were studied and evaluated by the temperature-controlled box-heat flow meter method. Test results indicated that the thermal insulation performance improved with the increase of thickness, but different wall configurations had little… More >

  • Open Access

    ARTICLE

    Extraction, Optical Properties and Bio-Imaging of Fluorescent Composition From Moso Bamboo Shoots

    Jinlai Yang1,2,3, Liangru Wu1,2,3,*, Yanhong Pan1,2,3, Hao Zhong1,2,3

    Journal of Renewable Materials, Vol.7, No.11, pp. 1209-1219, 2019, DOI:10.32604/jrm.2019.07896

    Abstract A novel fluorescent composition was firstly isolated from natural winter fresh Moso bamboo shoots, and its optical properties were fully investigated by fluorescence spectroscopy. It could emit strong blue light both in solid and solution state, providing high fluorescence intensity in ethanol. The solution’s concentration and addition of water greatly affected the fluorescence intensity, high concentration and addition of much water could quench fluorescence. Apoptosis results showed that the fluorescent extract (0-25 mg/L) could not induce apoptosis of Hela cells. Confocal fluorescent microscopic imaging in human hepatocellular carcinoma cells (HepG2) was realized using the fluorescent extract, it could dye the… More >

  • Open Access

    ARTICLE

    Biochar Effectively Reduces Ammonia Volatilization From Nitrogen-Applied Soils in Tea and Bamboo Plantations

    Lei Chu, H. M. K. Darshika Hennayake, Haijun Sun*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 261-267, 2019, DOI:10.32604/phyton.2019.07791

    Abstract Intensive practices in forest soils result in dramatic nitrogen (N) losses, particularly ammonia (NH3) volatilization, to adjacent environmental areas. A soil column experiment was conducted to evaluate the effect of bamboo biochar on NH3 volatilization from tea garden and bamboo forest soils. The results showed that biochar amendment effectively reduced NH3 volatilization from tea garden and bamboo forest soil by 79.2% and 75.5%, respectively. The soil pH values increased by 0.53-0.61 units after biochar application. The NH4+-N and total N of both soils were 13.8-29.7% and 34.0-41.9% higher under the biochar treatments than under the control treatment, respectively. In addition,… More >

  • Open Access

    ARTICLE

    Review on Connections for Original Bamboo Structures

    Chaokun Hong1a,2, Haitao Li1a,2,*, Rodolfo Lorenzo3, Gang Wu1b, Ileana Corbi4, Ottavia Corbi4, Zhenhua Xiong5, Dong Yang1a,2, Huizhong Zhang1a,2

    Journal of Renewable Materials, Vol.7, No.8, pp. 713-730, 2019, DOI:10.32604/jrm.2019.07647

    Abstract Bamboo is a green construction material in line with sustainable development strategies. The use of raw bamboo in architecture has existed since ancient times. In the long development years of original bamboo buildings, many areas in the world gradually formed unique bamboo buildings, which have become an important local cultural feature. For building structures, joints are the key to ensure structural load transfer. Because of hollow and thin-walled material property of bamboo, the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo, which seriously hinders the development of original bamboo structures.… More >

  • Open Access

    ARTICLE

    Compression Behaviors of Parallel Bamboo Strand Lumber Under Static Loading

    Haitao Li1,2,*, Zhenyu Qiu2, Gang Wu1,*, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Huizhong Zhang1,2, Rong Liu1,2

    Journal of Renewable Materials, Vol.7, No.7, pp. 583-600, 2019, DOI:10.32604/jrm.2019.07592

    Abstract In order to investigate the influence of length and compression directions upon behaviour of parallel bamboo strand lumber (PBSL) specimens, 240 axial compression tests have been performed. With three similar one different typical failure modes, the mechanical performance for PBSL specimens under compression parallel to grain and perpendicular to grain are different as a whole. From the point of the characteristic values, the compression strength parallel to grain is 2.1 times of the compression strength perpendicular to grain. The elastic modulus for compression parallel to grain is 3.64 times of the compression strength perpendicular to grain. While the compression ratios… More >

Displaying 51-60 on page 6 of 64. Per Page