Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Effect of Steam Explosion Technology Main Parameters on Moso Bamboo and Poplar Fiber

    Biqing Shu1,2, Qin Ren1, Lu Hong1, Zhongping Xiao2, Xiaoning Lu1,*, Wenya Wang2, Junbao Yu2,Naiqiang Fu2, Yiming Gu2, Jinjun Zheng2

    Journal of Renewable Materials, Vol.9, No.3, pp. 585-597, 2021, DOI:10.32604/jrm.2021.012932 - 14 January 2021

    Abstract One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard. When making fiberboard, a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability. In this study, the steam explosion pretreatment of Moso bamboo and poplar was conducted. The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber, the mass ratio of the unexploded specimen at the end face,… More >

  • Open Access

    ARTICLE

    Long-Term Bending Behaviour of Prestressed Glulam Bamboo-Wood Beam Based on Creep Effect

    Nan Guo1,*, Huajing Xiong1, Mingtao Wu1, Hongliang Zuo1, Fengguo Jiang2, Xiaofeng Hou3, Dabo Xin1

    Structural Durability & Health Monitoring, Vol.14, No.3, pp. 229-248, 2020, DOI:10.32604/sdhm.2020.09104 - 14 September 2020

    Abstract Creep is an important characteristic of bamboo and wood materials under long-term loading. This paper aims to study the long-term bending behaviour of prestressed glulam bamboo-wood beam (GBWB). For this, 14 pre-stressed GBWBs were selected and subjected to a long-term loading test for 60 days. Then, a comparative analysis was performed for the effects of pretension values, the number of pre-stressed wires, and long-term load on the stress variation of the steel wire and the long-term deflection of the beam midspan. The test results showed that with the number of prestressed wires increasing, the total… More >

  • Open Access

    REVIEW

    Review on the Application of Bamboo-Based Materials in Construction Engineering

    Biqing Shu1,2, Zhongping Xiao2, Lu Hong1, Sujun Zhang2, Chen Li2, Naiqiang Fu2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1215-1242, 2020, DOI:10.32604/jrm.2020.011263 - 31 August 2020

    Abstract Due to the continuously increasing demand for building materials across the world, it is necessary to use renewable materials in place of the existing nonrenewable materials in construction projects. Bamboo is a fast-growing flowering plant that may be used as a renewable material in construction. The use of bamboo in the construction of buildings can improve its long-term carbon fixation capacity and economic benefits. Although bamboo has the advantages of superior performance, low carbon content, high energy-saving and emission-reducing capacity, bamboo is an anisotropic material, which has many factors affecting its material performance, large variability More >

  • Open Access

    ARTICLE

    Experimental and Theoretical Study on Bonding Properties between Steel Bar and Bamboo Scrimber

    Xiangya Luo, Haiqing Ren, Yong Zhong*

    Journal of Renewable Materials, Vol.8, No.7, pp. 773-787, 2020, DOI:10.32604/jrm.2020.09414 - 01 June 2020

    Abstract To further verify the feasibility of newly designed reinforced bamboo scrimber composite (RBSC) beams used in building construction, the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests. Results indicated that the anti-pulling mechanical properties were signifi- cantly correlated to the diameter, thread form and buried depth of steel bar, forming density of bamboo scrimber as well as the heat treatment of bamboo bundle. There were two failure modes for anti-pulling tests: the tensile fracture and pulling out of steel bar. Both the ultimate load and average shear strength of anti-pulling More >

  • Open Access

    ARTICLE

    Bond Performance of Adhesively Bonding Interface of Steel-Bamboo Composite Structure

    Jialiang Zhang1, Zhenwen Zhang2, Keting Tong1, Jianmin Wang2, Yushun Li3,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 687-702, 2020, DOI:10.32604/jrm.2020.09513 - 12 May 2020

    Abstract The steel-bamboo composite structure is a newly developed structure, combining phyllostachys pubescens (also called Moso bamboo) plywood and cold-formed thin-walled steel with structural adhesive. The reliability of steelbamboo interface is the premise of composite effect. 13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test, and the strain difference analysis method was proposed to study the distribution of shear stress. The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood. The shear stress is not More >

  • Open Access

    ARTICLE

    Experimental Study on the Creep Behavior of Recombinant Bamboo

    Yang Wei*, Kunpeng Zhao, Chen Hang, Si Chen, Mingmin Ding

    Journal of Renewable Materials, Vol.8, No.3, pp. 251-273, 2020, DOI:10.32604/jrm.2020.08779 - 01 March 2020

    Abstract The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation, which serious effects the service performance of structures. To investigate the creep behavior of recombinant bamboo, twenty-four recombinant bamboo specimens were tested under lasting compressive and tensile loads at different load levels. The typical failure modes of recombinant bamboo under a lasting load at a high load level were buckling failure and brittle fracturing due to creep compressive creep and tensile creep development, respectively. At a high load level, the creep deformation of… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Stress Strain Relationship Models for Bamboo Scrimber

    Haitao Li1,*, Huizhong Zhang1, Zhenyu Qiu1, Jingwen Su2, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Hongzheng Liu5, Chungui Zhou6

    Journal of Renewable Materials, Vol.8, No.1, pp. 13-27, 2020, DOI:10.32604/jrm.2020.09341 - 01 January 2020

    Abstract In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique, a large quantities of experiments have been carried out. Based on the analysis of the test results, the following conclusions can be drawn. Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain. Brittle failure happened for all tensile tests. The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, More >

  • Open Access

    ARTICLE

    Study on Thermal Insulation Performance of Cross-Laminated Bamboo Wall

    Qingfang Lv1,*, Weiyang Wang1, Ye Liu1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1231-1250, 2019, DOI:10.32604/jrm.2019.08345

    Abstract In recent years, bamboo, as a green building material, has attracted more and more attention worldwide. Inspired by the investigation of cross-laminated timber in structural systems, a new engineered cross-laminated bamboo (CLB) consisting of the cross lamination of bamboo scrimber plates is proposed in this paper. To evaluate its potential in structural applications, the thermal insulation performances of the CLB walls and CLB walls with the EPS foam plate were studied and evaluated by the temperature-controlled box-heat flow meter method. Test results indicated that the thermal insulation performance improved with the increase of thickness, but More >

  • Open Access

    ARTICLE

    Extraction, Optical Properties and Bio-Imaging of Fluorescent Composition From Moso Bamboo Shoots

    Jinlai Yang1,2,3, Liangru Wu1,2,3,*, Yanhong Pan1,2,3, Hao Zhong1,2,3

    Journal of Renewable Materials, Vol.7, No.11, pp. 1209-1219, 2019, DOI:10.32604/jrm.2019.07896

    Abstract A novel fluorescent composition was firstly isolated from natural winter fresh Moso bamboo shoots, and its optical properties were fully investigated by fluorescence spectroscopy. It could emit strong blue light both in solid and solution state, providing high fluorescence intensity in ethanol. The solution’s concentration and addition of water greatly affected the fluorescence intensity, high concentration and addition of much water could quench fluorescence. Apoptosis results showed that the fluorescent extract (0-25 mg/L) could not induce apoptosis of Hela cells. Confocal fluorescent microscopic imaging in human hepatocellular carcinoma cells (HepG2) was realized using the fluorescent More >

Displaying 51-60 on page 6 of 68. Per Page