Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (233)
  • Open Access

    ARTICLE

    Dynamics of Free Liquid Jets Affected by Obstructions at the Jet Entrance

    V. N. Lad1, Z. V. P. Murthy1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 241-255, 2015, DOI:10.3970/fdmp.2015.011.241

    Abstract Free liquid jets are of great technical importance in a variety of applications like ink-jet printing, glass painting, spray coating and metal cutting. Here we consider the changes induced in the dynamics of such jets by the presence of obstructions at the tube exit. Using stainless steel bars of 1.5 mm diameter as obstruction objects and aqueous solutions of glycerol of varying concentrations as working fluids, we performed experiments for different configurations, including a single rod at the centre of the tube exit, two parallel rods equidistant from the centre of the tube, and a 10 mesh screen. Images of… More >

  • Open Access

    ARTICLE

    Theoretical Study of Solvation Effect on Diffusion Coefficient of Li Ion in Propylene Carbonate

    Kentaro Doi1,2, Yuzuru Chikasako1, Satoyuki Kawano1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 1-26, 2015, DOI:10.3970/fdmp.2015.011.001

    Abstract Propylene carbonate (PC) and ethylene carbonate are known as good candidates of organic solvents to be used in Li-ion rechargeable batteries, since Li+ ions exhibit preferable charge-discharge characteristics with such solvents. On the other hand, polar solvents usually form solvation shells with solute ions, and cause a drastic reduction of ionic conductivity. Along these lines, there has been a curious question why the diffusion coefficient DLi of Li+ strongly depends on the salt concentration. In the present study, a theoretical model is developed on the basis of the Langevin equation in which the interactions between ions and solvent molecules are… More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convection Past an Impulsively Started Isothermal Vertical Plate with Radiation and Viscous Dissipation

    Hawa Singh1, Paras Ram2, Vikas Kumar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.4, pp. 521-550, 2014, DOI:10.3970/fdmp.2014.010.521

    Abstract The fluctuating flow produced by magneto - hydrodynamic free convection past an impulsively started isothermal vertical plate is studied taking into account the effects of radiation and viscous dissipation. By using the similarity transformation, the governing equations are transformed into dimensionless form and then the system of nonlinear partial differential equations is solved by a perturbation technique. The considered uniform magnetic field acts perpendicular to the plate, which absorbs the fluid with a given suction velocity. A comparison is made in velocity and temperature profiles for two particular cases of real and imaginary time dependent functions. The effects of various… More >

  • Open Access

    ARTICLE

    Stability of Marangoni Convection in a Composite Porous-Fluid with a Boundary Slab of Finite Conductivity

    Norihan M. Arifin1, Ioan Pop2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 149-160, 2009, DOI:10.3970/fdmp.2009.005.149

    Abstract A linear stability analysis is used to investigate the onset of Marangoni convection in a three-layer system comprising an incompressible fluid saturated porous layer over which lies a layer of the same fluid and below which lies a solid layer. The lower boundary is subjected to a fixed heat flux, while the upper free surface of the fluid is non-deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition is used and the Darcy law is employed to describe the flow in the porous medium. The asymptotic analysis of the long-wavelength is performed and the… More >

  • Open Access

    ARTICLE

    Cased Hole Flexural Modes in Anisotropic Formations

    Ping’en Li1, Xianyue Su1,2, Youquan Yin1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 93-102, 2007, DOI:10.3970/cmc.2007.006.093

    Abstract Based on the perturbation method, for flexural wave in cased hole in anisotropic formation, the alteration in the phase velocity caused by the differences in elastic constants between anisotropic formation of interest and a reference, or unperturbed isotropic formation is obtained. Assuming the cased hole is well bonded, the Thomson-Haskell transfer matrix method is applied to calculate the dispersion relation of flexural wave in cased hole in unperturbed isotropic formation. Both the cases of a fast and slow formation are considered where the symmetry axis of a transversely isotropic (TI) formation makes an angle with the cased hole axis, the… More >

  • Open Access

    ARTICLE

    Asymptotic Solutions for Multilayered Piezoelectric Cylinders under Electromechanical Loads

    Chih-Ping Wu1, Yun-Siang Syu

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 87-108, 2006, DOI:10.3970/cmc.2006.004.087

    Abstract Based on the three-dimensional (3D) piezoelectricity, we presented asymptotic solutions for multilayered piezoelectric hollow cylinders using the method of perturbation. The material properties in the general formulation are firstly regarded to be heterogeneous through the thickness, and then specified as the layerwise step functions in the cases of multilayered cylinders. The transverse normal load and normal electric displacement are respectively applied on the lateral surfaces of the cylinders. The boundary conditions of cylinders are considered to be simply supported at the two edges. In the formulation the twenty-two basic equations of piezoelectricity are reduced to eight differential equations in terms… More >

  • Open Access

    ARTICLE

    A Novel Improved Bat Algorithm in UAV Path Planning

    Na Lin1, Jiacheng Tang1, Xianwei Li2,3, Liang Zhao1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 323-344, 2019, DOI:10.32604/cmc.2019.05674

    Abstract Path planning algorithm is the key point to UAV path planning scenario. Many traditional path planning methods still suffer from low convergence rate and insufficient robustness. In this paper, three main methods are contributed to solving these problems. First, the improved artificial potential field (APF) method is adopted to accelerate the convergence process of the bat’s position update. Second, the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm. Third chaos strategy is proposed to avoid falling into a local optimum. Compared with standard APF and chaos strategy in UAV path planning scenarios, the… More >

  • Open Access

    ARTICLE

    Detecting Iris Liveness with Batch Normalized Convolutional Neural Network

    Min Long1,2,*, Yan Zeng1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 493-504, 2019, DOI:10.32604/cmc.2019.04378

    Abstract Aim to countermeasure the presentation attack for iris recognition system, an iris liveness detection scheme based on batch normalized convolutional neural network (BNCNN) is proposed to improve the reliability of the iris authentication system. The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris, including convolutional layer, batch-normalized (BN) layer, Relu layer, pooling layer and full connected layer. The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels, and then the iris features are extracted by BNCNN. With these features, the genuine iris and fake iris are determined by… More >

  • Open Access

    ARTICLE

    Research on SFLA-Based Bidirectional Coordinated Control Strategy for EV Battery Swapping Station

    Guo Zhao1,2, Jiang Guo1,2, Hao Qiang3

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 343-356, 2017, DOI:10.3970/cmc.2017.053.343

    Abstract As a good measure to tackle the challenges from energy shortages and environmental pollution, Electric Vehicles (EVs) have entered a period of rapid growth. Battery swapping station is a very important way of energy supply to EVs, and it is urgently needed to explore a coordinated control strategy to effectively smooth the load fluctuation in order to adopt the large-scale EVs. Considering bidirectional power flow between the station and power grid, this paper proposed a SFLA-based control strategy to smooth the load profile. Finally, compared simulations were performed according to the related data. Compared to particle swarm optimization (PSO) method,… More >

  • Open Access

    ARTICLE

    Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen's Nonlocal Elasticity Theory and the Perturbation Method

    Chih-Ping Wu1,2, Wei-Chen Li1

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 73-103, 2016, DOI:10.3970/cmc.2016.052.073

    Abstract A three-dimensional (3D) asymptotic theory is reformulated for the static analysis of simply-supported, isotropic and orthotropic single-layered nanoplates and graphene sheets (GSs), in which Eringen's nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these. The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional (2D) nonlocal plate problems, the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory (CST), although with different nonhomogeneous terms. Expanding the primary field variables of each order… More >

Displaying 221-230 on page 23 of 233. Per Page