Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    A 3D Computational Model of RC Beam Using Lower Order Elements with Enhanced Strain Approach in the Elastic Range

    Amiya K. Samanta1, Somnath Ghosh2

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 43-52, 2008, DOI:10.3970/cmc.2008.008.043

    Abstract A procedure has been described to carry out three-dimensional elastic analysis of reinforced concrete beam employing finite element technique, which uses lower order elements. The proposed procedure utilizes 8-noded isometric solid /hexahedral elements HCiS18 with enhanced assumed strain (EAS) formulation, recently developed in the literature, to predict load-deformation and internal stresses produced in case of a simply supported RC beams in the elastic regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction in bond-slip condition considering continuous interface elements at the material level. Although, bond-slip relation are very much non-linear… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Nonlinear Dynamic Responses of Beams Laminated with Giant Magnetostrictive Actuators

    Haomiao Zhou1,2, Youhe Zhou1,3, Xiaojing Zheng1

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 201-212, 2007, DOI:10.3970/cmc.2007.006.201

    Abstract This paper presents some simulation results of nonlinear dynamic responses for a laminated composite beam embedded by actuators of the giant magnetostrictive material (Terfenol-D) subjected to external magnetic fields, where the giant magnetostrictive materials utilizing the realignment of magnetic moments in response to applied magnetic fields generate nonlinear strains and forces significantly larger than those generated by other smart materials. To utilize the full potential application of the materials in the function and safety designs, e.g., active control of vibrations, the analysis of dynamic responses is requested in the designs as accurately as possible on the basis of those inherent… More >

  • Open Access

    ARTICLE

    Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

    E.J. Sapountzakis1, G.C. Tsiatas2

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 103-116, 2007, DOI:10.3970/cmc.2007.006.103

    Abstract In this paper the general flexural-torsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by… More >

  • Open Access

    ARTICLE

    Fourier Analysis of Mode Shapes of Damaged Beams

    Kanchi Venkatesulu Reddy1, Ranjan Ganguli2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 79-98, 2007, DOI:10.3970/cmc.2007.005.079

    Abstract This paper investigates the effect of damage on beams with fixed boundary conditions using Fourier analysis of the mode shapes in spatial domain. A finite element model is used to obtain the mode shapes of a damaged fixed-fixed beam. Then the damaged beams are studied using a spatial Fourier analysis. This approach contrasts with the typical time domain application of Fourier analysis for vibration problems. It is found that damage causes considerable change in the Fourier coefficients of the mode shapes. The Fourier coefficients, especially the higher harmonics, are found to be sensitive to both damage size and location and… More >

  • Open Access

    ARTICLE

    A New Locking Free Higher Order Finite Element Formulation for Composite Beams.

    M.V.V.S. Murthy1, S. Gopalakrishnan2,3, P.S. Nair4

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 43-62, 2007, DOI:10.3970/cmc.2007.005.043

    Abstract A refined 2-node, 7 DOF/node beam element formulation is presented in this paper. This formulation is based on higher order shear deformation theory with lateral contraction for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams. In addition to axial, transverse and rotational degrees of freedom, the formulation also incorporates the lateral contraction and its higher order counterparts as degrees of freedom. The element shape functions are derived by solving the static part of the governing equations. The element considers general ply stacking and the numerical results shows that the element exhibits super convergent property. The efficiency of the element… More >

  • Open Access

    ARTICLE

    A Correlation Coefficient Approach for Evaluation of Stiffness Degradation of Beams Under Moving Load

    Thanh Q. Nguyen1,2, Thao T. D. Nguyen3, H. Nguyen-Xuan4,5,*, Nhi K. Ngo1,2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 27-53, 2019, DOI:10.32604/cmc.2019.07756

    Abstract This paper presents a new approach using correlation and cross-correlation coefficients to evaluate the stiffness degradation of beams under moving load. The theoretical study of identifying defects by vibration methods showed that the traditional methods derived from the vibration measurement data have not met the needs of the actual issues. We show that the correlation coefficients allow us to evaluate the degree and the effectiveness of the defects on beams. At the same time, the cross-correlation model is the basis for determining the relative position of defects. The results of this study are experimentally conducted to confirm the relationship between… More >

  • Open Access

    ARTICLE

    Shear Strength Evaluation of Concrete Beams Reinforced with BFRP Bars and Steel fibers without Stirrups

    Smitha Gopinath1,2, S. Meenu3, A. Ramach,ra Murthy1

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 81-103, 2016, DOI:10.3970/cmc.2016.051.081

    Abstract This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer (BFRP) and steel fibers without stirrups. Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail. It is found that combining steel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure. Further, the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams. Based on the review, the appropriate model… More >

  • Open Access

    ARTICLE

    Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Nonuniform Beams with Variable Curvature

    Sen-Yung Lee1, Shueei-Muh Lin2,3, Kai-Ping Chang1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 1-19, 2016, DOI:10.3970/cmc.2016.051.001

    Abstract The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton's principle. These equations are expressed in terms of flexural and torsional displacements simultaneously. In this study, the analytical method is proposed. Firstly, two physical parameters are introduced to simplify the analysis. One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements. Based on the relation, the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms… More >

  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 143-177, 2015, DOI:10.3970/cmc.2015.047.143

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation… More >

  • Open Access

    ARTICLE

    Bending Response of Foldcore Composite Sandwich Beams

    Lixin Cong1, Yuguo Sun1,2, Xinzhu Wang3

    CMC-Computers, Materials & Continua, Vol.47, No.1, pp. 1-14, 2015, DOI:10.3970/cmc.2015.047.001

    Abstract In order to solve bending behavior difference of corrugated structure in L andWorientation, bending response for composite sandwich beams with foldcores of three different wall thicknesses were experimentally and numerically investigated. Effect of the cell walls thickness on the strength and failure behavior of the composite sandwich beams with L and W orientations was also examined. The deformation mode was obtained by the numerical method; a constitutive law of laminated material has been incorporated into a finite element (FE) analysis program. Numerical calculations give accurate prediction to the bending response of foldcore composite sandwich beams comparing with experiments. Structural flexural… More >

Displaying 181-190 on page 19 of 209. Per Page