Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (208)
  • Open Access

    ARTICLE

    Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration

    Chun Sha1,*, Chaohui Yue2, Wenchen Wang3

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 369-381, 2023, DOI:10.32604/sdhm.2023.027948

    Abstract Convolution neural networks in deep learning can solve the problem of damage identification based on vibration acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks, and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to generate submodels after offset sampling. When using submodels for damage identification, the voting method ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. Finally, the cantilever damage problem… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Failure of Cantilever Beam Subjected to a Concentrated Force and Uniform Distributed Traction

    Zeyuan Zhou1, Ming Yu1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09135

    Abstract Peridynamics (PD) is a reformulation of the classical continuum mechanics. Its core consists in that a weighted integral of relative displacement over a spatial domain is used instead of the spatial derivative of displacement in governing equations of deformation. Based on an improved technique of exerting traction on boundary surface, an improved peridynamic motion equation has been proposed within the framework of the peridynamic(PD) theory. It is more natural and easier to deal with boundary conditions for the elastic deformation and fracture analysis. Under the enhancement effect in the constructed transfer functions of boundary traction, there is not needed the… More >

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Fractional Processing Based Adaptive Beamforming Algorithm

    Syed Asghar Ali Shah1, Tariqullah Jan1, Syed Muslim Shah2, Ruhul Amin Khalil1,*, Ahmad Sawalmeh3, Muhammad Anan4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1065-1084, 2023, DOI:10.32604/cmc.2023.039826

    Abstract Fractional order algorithms have shown promising results in various signal processing applications due to their ability to improve performance without significantly increasing complexity. The goal of this work is to investigate the use of fractional order algorithm in the field of adaptive beamforming, with a focus on improving performance while keeping complexity lower. The effectiveness of the algorithm will be studied and evaluated in this context. In this paper, a fractional order least mean square (FLMS) algorithm is proposed for adaptive beamforming in wireless applications for effective utilization of resources. This algorithm aims to improve upon existing beamforming algorithms, which… More >

  • Open Access

    ARTICLE

    Improved Beam Steering Method Using OAM Waves

    Nidal Qasem*, Ahmad Alamayreh

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 417-431, 2023, DOI:10.32604/csse.2023.035603

    Abstract Orbital Angular Momentum (OAM) is an intrinsic feature of electromagnetic waves which has recently found many applications in several areas in radio and optics. In this paper, we use OAM wave characteristics to present a simple method for beam steering over both elevation and azimuth planes. The design overcomes some limitations of traditional steering methods, such as limited dynamic range of steering, the design complexity, bulky size of the steering structure, the limited bandwidth of operation, and low gain. Based on OAM wave characteristics, the proposed steering method avoids design complexities by adopting a simple method for generating the OAM-carrying… More >

  • Open Access

    ARTICLE

    Isogeometric Analysis of Longitudinal Displacement of a Simplified Tunnel Model Based on Elastic Foundation Beam

    Zhihui Xiong*, Lei Kou, Jinjie Zhao, Hao Cui, Bo Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 803-824, 2023, DOI:10.32604/cmes.2023.024833

    Abstract Serious uneven settlement of the tunnel may directly cause safety problems. At this stage, the deformation of the tunnel is predicted and analyzed mainly by numerical simulation, while the commonly used finite element method (FEM) uses low-order continuous elements. Therefore, the accuracy of tunnel settlement prediction is not enough. In this paper, a method is proposed to study the vertical deformation of the tunnel by using the combination of isogeometric analysis (IGA) and Bézier extraction operator. Compared with the traditional IGA method, this method can be easily integrated into the existing FEM framework, and ensure the same accuracy. A numerical… More >

  • Open Access

    ARTICLE

    Analytical Investigation into the Rotational Performance of Glulam Bolted Beam-Column Connections under Coupled Bending Moment and Shear Force

    Xiaofeng Zhang1, Lisheng Luo2,*, Youfu Sun1, Xinyue Cui2, Yongqiang Zhang2

    Journal of Renewable Materials, Vol.11, No.4, pp. 2033-2054, 2023, DOI:10.32604/jrm.2022.023651

    Abstract Considering the glulam beam-column connection form and the number of bolts, monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance and failure mode of the connection. The test results revealed that compared with U-shaped connectors, T-shaped connectors can effectively improve the ductility of connections, and the increase in the number of bolts can reduce the initial stiffness and ductility of connections. By theoretical analysis, formulas for calculating the initial stiffness and ultimate moment of connections were deduced. Subsequently, the moment-rotation theoretical model of connections was established based… More > Graphic Abstract

    Analytical Investigation into the Rotational Performance of Glulam Bolted Beam-Column Connections under Coupled Bending Moment and Shear Force

  • Open Access

    ARTICLE

    Improved Design of a Hydraulically Expanded Overhead Cylinder for an Automotive Torsion Beam

    Kefan Yang1,*, Youmin Wang1, Kexun Fu1, Jiaqi Chen2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1317-1338, 2023, DOI:10.32604/fdmp.2023.024265

    Abstract The design of hydro-bulge molds, able to provide hollow parts with special-shaped cross-sections, is still a pretty complicated task (especially for what concerns the design of the related hydraulic system and its “synchronization”). In the present work, this task is addressed through the introduction of a new type of overhead cylinder hydraulic synchronization system, able to correct automatically any deviation from the optimal process. Using the AMESim software, the displacement synchronization curve of the piston rods of the two cylinders is obtained and it is verified that the system is able to implement an automatic deviation correction function by adjusting… More >

  • Open Access

    ARTICLE

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

    Lazreg Hadji1,2,*, Fabrice Bernard3, Nafissa Zouatnia4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1043-1054, 2023, DOI:10.32604/fdmp.2022.022327

    Abstract The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are analyzed. The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components. The foundation medium is also considered to be linear, homogeneous, and isotropic, and modeled using the Winkler-Pasternak law. The hyperbolic shear deformation theory is applied for the kinematic relations, and the equations of motion are obtained using the Hamilton’s principle. An analytical solution is presented accordingly, assuming that the PFG beam is simply supported. Comparisons with the open literature are implemented… More > Graphic Abstract

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and numerical models under the corresponding… More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

Displaying 11-20 on page 2 of 208. Per Page