Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Numerical Simulation and Experimental Study of Self-Supplied Aerostatic Air Float Piston in Miniature Linear Compressor

    Haifeng Zhu1,*, Zhenyu Chen1,*, Teng Lu1, Xiaoqin Zhi2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1303-1321, 2025, DOI:10.32604/fhmt.2025.065830 - 29 August 2025

    Abstract To meet the demand for miniaturized, compact, high-reliability, and long-life cryocoolers in small satellite platforms, the development of a linear Stirling cryocooler has been undertaken. Computational Fluid Dynamics (CFD) numerical simulation software was used to conduct simulation analyses, verifying the impact of porous media channel layout, eccentricity, viscous resistance coefficient of the porous media, and piston position on the designed aerostatic bearing piston employing self-supplied gas bearing technology. The calculation results indicate that both the aerostatic force and leakage increase synchronously with eccentricity, while the two designed gas lift channel layouts are capable of providing… More >

  • Open Access

    ARTICLE

    In-Plane Bearing Capacity of CFST Truss Arch Bridges with Geometric Defects

    Chao Luo1, Zhengsong Xiang1,2, Yin Zhou1,*, Dingsong Qin3, Tianlei Cheng4, Qizhi Tang1

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 683-703, 2025, DOI:10.32604/sdhm.2025.061549 - 03 April 2025

    Abstract Failure tests were conducted on two concrete-filled steel tubular (CFST) truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges. The effects of antisymmetric defect on the ultimate bearing capacity, failure mode, structural response, and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed. On this basis, numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios. The initial defect form of the arch… More >

  • Open Access

    ARTICLE

    Safety Evaluation of Bridge under Moving Abnormal Indivisible Load Based on Fusing Bridge Inspection Data and Load Test Data

    He Zhang1,2,*, He-Qing Mu2,*, Xiao Zhang3, He Zhang2, Yuedong Yang4

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 499-530, 2025, DOI:10.32604/sdhm.2025.059070 - 03 April 2025

    Abstract Safety evaluation of a bridge under Moving Abnormal Indivisible Loads (MAILs) directly relates to whether an oversized and/or overweight Large-Cargo Transportation (LCT) vehicle is permitted to pass the bridge. Safety evaluation can be updated by fusing bridge inspection data and load test data, but there are two fundamental difficulties in updating. The first difficulty is to develop an updating scheme to utilize the unstructured inspection data. The second difficulty is to develop a successive updating scheme using load test data based on the previous updating results of the inspection data. This paper proposed a framework,… More >

  • Open Access

    ARTICLE

    Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test

    Yushan Ye1, Tao Gao1, Liankun Wang2, Junjie Ma2, Yingchun Cai2, Heng Liu2,*, Xiaoge Liu2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 145-166, 2025, DOI:10.32604/sdhm.2024.053756 - 15 November 2024

    Abstract To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams, destructive tests were conducted on full-scale pre-stressed concrete beams. Based on the measurement and analysis of beam deflection, strain, and crack development under various loading levels during the research tests, combined with the verification coefficient indicators specified in the codes, the verification coefficients of bridges at different stages of damage can be examined. The results indicate that the T-beams experience complete, incomplete linear, and… More >

  • Open Access

    PROCEEDINGS

    Wrinkling and Buckling of a New Swept Baffled Inflatable Wing Structure

    Nuo Ma1, Qingyang Liu1, Junhui Meng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011195

    Abstract Due to its flexibility and foldable ability, the inflatable wing is widely employed to loitering munitions and aerostats [1-3]. Meanwhile, as a typical flexible thin-walled structure, the wrinkling and buckling behaviors of the inflatable wing induced in flight will limit its load-bearing capacity [4,5]. Therefore, a wrinkling-resistant structural configuration is the key to improving performance of the inflatable wing. Among various schemes, the swept baffled structure is considered to have the potential to retard wrinkling because of the designable axis of twist [6,7]. However, owing to the flexible large deformation of inflatable wing under aerodynamic… More >

  • Open Access

    ARTICLE

    Investigation of the Effect of the Force Arm on the Bending Capability of Prestressed Glulam Beam

    Yan Zhao1,*, Yuanyuan Wu2, Shengliang He3, Zhenglu Gao1, Ziyan Huang1, Chenzheng Lv4

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 641-661, 2024, DOI:10.32604/sdhm.2024.049601 - 19 July 2024

    Abstract Prestress enables the Glulam beam could make full use of the compression strength, and then increase the span, but it still could not reduce all drawbacks, such as cross-section weakening and small force arm. To avoid slotting and ensure suitable tension and compression couple, one kind of novel anchor has been proposed, which could meet the bearing capacity requirement. And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1: 2 was simulated, to investigate the effect of the force arm on bending capacities, failure modes, and deformation performance. Results More > Graphic Abstract

    Investigation of the Effect of the Force Arm on the Bending Capability of Prestressed Glulam Beam

  • Open Access

    ARTICLE

    Enhanced Transmission Tower Foundation Reliability Assessment: A Fuzzy Comprehensive Evaluation Framework

    Yang Li1, Zikang Zheng1,*, Jiangkun Zhang2

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 425-444, 2024, DOI:10.32604/sdhm.2024.046584 - 05 June 2024

    Abstract Due to the lack of a quantitative basis for the inspection, evaluation, and identification of existing transmission tower foundations, a new fuzzy comprehensive evaluation method is proposed to assess the reliability of transmission tower foundation bearing capacity. This method is based on the reliability analysis of the transmission tower foundation bearing capacity by analyzing the sensitivity of degradation of detection indexes on the reliability of transmission tower foundation bearing capacity, the weighting coefficient matrix is established about the influencing factors in the evaluation model. Through the correlation analysis between the bearing capacity degradation of the More > Graphic Abstract

    Enhanced Transmission Tower Foundation Reliability Assessment: A Fuzzy Comprehensive Evaluation Framework

  • Open Access

    ARTICLE

    Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams

    Qifeng Shan1,2, Ming Mao2, Yushun Li3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 149-166, 2024, DOI:10.32604/jrm.2023.029445 - 23 January 2024

    Abstract A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study. The deflection analysis considers the influences of interface slippage and shear deformation. Furthermore, the calculation model for flexural capacity is proposed considering the two stages of loading. The theoretical results are verified with 8 specimens considering different prestressed load levels, load schemes, and prestress schemes. The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams. For deflection analysis, the method considering the slippage and More >

  • Open Access

    ARTICLE

    Influencing Factors of Load Carrying Capacity and Cooperative Work Laws of Metro Uplift Piles

    Bo Liu1,*, Haoran Li1, Shuya Liu2

    Structural Durability & Health Monitoring, Vol.14, No.3, pp. 249-264, 2020, DOI:10.32604/sdhm.2020.06482 - 14 September 2020

    Abstract The buoyancy of groundwater can reduce the foundation bearing capacity and cause the metro tunnels to float as a whole, which threatens the safety of structures seriously. Therefore, uplift piles are set up to improve the structural stability. In this paper, FLAC3D software is used to establish the calculation models of pile foundation. The bearing failure process of uplift piles was simulated to study the influencing factors on single pile load bearing capacity as well as the cooperative work laws of pile groups. The load-displacement curves of pile top under different length-diameter ratios, pile-soil interface… More >

  • Open Access

    ARTICLE

    Mechanical Behavior of Light Trusses Made of Poplar Laminated Veneer Lumber and Connected with Bolts and Tooth Plates

    Yan Liu1, Yanfei Guo1, Xufeng Sun1,*, Meng Gong2

    Journal of Renewable Materials, Vol.8, No.9, pp. 1111-1127, 2020, DOI:10.32604/jrm.2020.09575 - 03 August 2020

    Abstract Poplar Laminated Veneer Lumber (Poplar LVL) is a new type of engineering materials with high strength, good reliability and small variability. Poplar LVL is manufactured from the fast-growing poplar, which is widely used in packaging, furniture and others, however, is rarely adopted in construction. In order to explore the feasibility of poplar LVL trusses in construction of roof, four 4.5-m-span Fink-and-Howe trusses were designed and assembled, which were made of poplar LVL with bolted- and tooth-plated connections. Vertical static loading on the upper chord joints of a truss was imposed by self-balancing test device. The… More >

Displaying 1-10 on page 1 of 10. Per Page