Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    PROCEEDINGS

    Bioinspired Arched Structure for Enhanced Energy Absorption in Hierarchical Re-Entrant Honeycombs

    Zhen Zou1,2, Fengxiang Xu1,2,*, Yifan Zhu1,2, Hao Luo1,2, Xiao Geng1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.010659

    Abstract Although the arched structures inspired by biomaterials have been extensively applied in construction for load bearing, they remain a relatively new component for absorbing energy in impact scenarios. The hierarchical re-entrant honeycomb (RH) with horizontal and vertical arched units (namely, horizontally and vertically arched hierarchical RH (AHRH) – HAHRH and VAHRH) are constructed, and their metallic specimens are fabricated for compression testing. Compared to well-known circular units, the horizontal and vertical arched units exhibit an increase in plateau stress (PS) by 16.8% and 23.8%, and an enhancement in specific energy absorption (SEA) by 10.8% and… More >

  • Open Access

    PROCEEDINGS

    Enhancement of Compression Behavior and Customizable Energy Absorption Capacities of a Bio-Inspired Graded Metamaterial

    Yifan Zhu1,2, Fengxiang Xu1,2,*, Zhen Zou1,2, Zhengpao Liu1,2, Xiaokun Dai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-2, 2025, DOI:10.32604/icces.2025.010641

    Abstract Conventional energy-absorbing mechanical metamaterials primarily dissipate energy through irreversible plastic deformation, buckling, or fragmentation. Their applications are limited by structural fractures caused by 45° shear stresses and their suitability only for single-use impact protection, lacking the capability for repeated energy absorption. Inspired by the cancellous bone of the human skull, a Tangent Arc Curve Structure (TACS) was proposed in this study, followed by the modeling and fabrication of four types of 3D-TACSs: tensile, tensile-rotational, orthogonal, and diagonal. The shear resistance and repeatable energy absorption capabilities of TACS were systematically investigated through theoretical analysis, compression experiments,… More >

  • Open Access

    ARTICLE

    BioSkinNet: A Bio-Inspired Feature-Selection Framework for Skin Lesion Classification

    Tallha Akram1,*, Fahdah Almarshad1, Anas Alsuhaibani1, Syed Rameez Naqvi2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2333-2359, 2025, DOI:10.32604/cmes.2025.064079 - 30 May 2025

    Abstract Melanoma is the deadliest form of skin cancer, with an increasing incidence over recent years. Over the past decade, researchers have recognized the potential of computer vision algorithms to aid in the early diagnosis of melanoma. As a result, a number of works have been dedicated to developing efficient machine learning models for its accurate classification; still, there remains a large window for improvement necessitating further research efforts. Limitations of the existing methods include lower accuracy and high computational complexity, which may be addressed by identifying and selecting the most discriminative features to improve classification… More >

  • Open Access

    REVIEW

    Bio-Inspired Algorithms in NLP Techniques: Challenges, Limitations and Its Applications

    Huu-Tuong Ho1, Thi-Thuy-Hoai Nguyen2, Duong Nguyen Minh Huy3, Luong Vuong Nguyen1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3945-3973, 2025, DOI:10.32604/cmc.2025.063099 - 19 May 2025

    Abstract Natural Language Processing (NLP) has become essential in text classification, sentiment analysis, machine translation, and speech recognition applications. As these tasks become complex, traditional machine learning and deep learning models encounter challenges with optimization, parameter tuning, and handling large-scale, high-dimensional data. Bio-inspired algorithms, which mimic natural processes, offer robust optimization capabilities that can enhance NLP performance by improving feature selection, optimizing model parameters, and integrating adaptive learning mechanisms. This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—across core NLP tasks. We analyze More >

  • Open Access

    ARTICLE

    Artificial Circulation System Algorithm: A Novel Bio-Inspired Algorithm

    Nermin Özcan1,2,*, Semih Utku3, Tolga Berber4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 635-663, 2025, DOI:10.32604/cmes.2024.055860 - 17 December 2024

    Abstract Metaheuristics are commonly used in various fields, including real-life problem-solving and engineering applications. The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm (ACSA). The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process. The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions, identified as classical benchmark functions. The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities. Furthermore, the paper evaluates ACSA in comparison to 64 metaheuristic… More >

  • Open Access

    PROCEEDINGS

    Material-Structure Integrated Additive Manufacturing of Bio-Inspired Lightweight Metallic Components for Aerospace Applications

    Dongdong Gu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013403

    Abstract In this presentation, we will report our recent research progress and prospect in the fields of laser additive manufacturing (AM) / 3D printing (3DP) of high-performance/multi-functional lightweight metallic components for aerospace applications. The innovative elements of AM including multi-material layout, innovative structural design, tailored printing process, and resultant high performance and multiple functions of components will be addressed. For a tailored printing process, some key scientific issues in AM process control deserve to be studied, including interaction of energy and printed matter, thermodynamic and dynamic behavior of printing, relationship of process parameters, microstructure and properties. More >

  • Open Access

    PROCEEDINGS

    Bio-Inspired Facile Strategy for Programmable Osmosis-Driven Shape-Morphing Elastomer Composite Structure

    Yuanhang Yang1, Changjin Huang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010991

    Abstract Achieving programmable and reversible deformations of soft materials is a long-standing goal for various applications in soft robotics, flexible electronics and many other fields. Swelling-induced shape-morphing has been intensively studied as one of the potential mechanisms. However, achieving an extremely large swelling ratio (>1000% in volume) remains challenging with existing swellable soft materials (e.g., hydrogels and water-swellable rubbers). Inspired by the shape change enabled by the osmosis-driven swelling in living organisms, herein, we report a polymer composite system composed of fine sodium chloride (NaCl) particles embedded in Ecoflex00-10 polymer. This Ecoflex00-10/NaCl polymer composite can achieve… More >

  • Open Access

    ARTICLE

    Using the Novel Wolverine Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1, Belal Batiha2, Omar Alsayyed3, Frank Werner4,*, Zeinab Monrazeri5, Mohammad Dehghani5,*, Kei Eguchi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2253-2323, 2024, DOI:10.32604/cmes.2024.055171 - 31 October 2024

    Abstract This paper introduces the Wolverine Optimization Algorithm (WoOA), a biomimetic method inspired by the foraging behaviors of wolverines in their natural habitats. WoOA innovatively integrates two primary strategies: scavenging and hunting, mirroring the wolverine’s adeptness in locating carrion and pursuing live prey. The algorithm’s uniqueness lies in its faithful simulation of these dual strategies, which are mathematically structured to optimize various types of problems effectively. The effectiveness of WoOA is rigorously evaluated using the Congress on Evolutionary Computation (CEC) 2017 test suite across dimensions of 10, 30, 50, and 100. The results showcase WoOA’s robust… More >

  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    ARTICLE

    Chase, Pounce, and Escape Optimization Algorithm

    Adel Sabry Eesa*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 697-723, 2024, DOI:10.32604/iasc.2024.053192 - 06 September 2024

    Abstract While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple with the delicate balance between exploration and exploitation, leading to issues such as premature convergence, sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges, this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups, each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima. By incorporating a unique search mechanism that integrates More >

Displaying 1-10 on page 1 of 44. Per Page