Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Enhancing Emotional Expressiveness in Biomechanics Robotic Head: A Novel Fuzzy Approach for Robotic Facial Skin’s Actuators

    Nguyen Minh Trieu, Nguyen Truong Thinh*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 477-498, 2025, DOI:10.32604/cmes.2025.061339 - 11 April 2025

    Abstract In robotics and human-robot interaction, a robot’s capacity to express and react correctly to human emotions is essential. A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions. This research focuses on human anthropometric theories to design and control robotic facial actuators, addressing the limitations of existing approaches in expressing emotions naturally and accurately. The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy… More >

  • Open Access

    PROCEEDINGS

    Experimental and Computational Elucidation of Mechanical Forces on Cell Nucleus

    Miao Huang1, Maedeh Lotfi1, Heyang Wang4, Hayley Sussman5, Kevin Connell1, Quang Vo1, Malisa Sarntinoranont1, Hitomi Yamaguchi1, Juan Guan2, Xin Tang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011130

    Abstract Mechanotransduction, i.e., living cells sense and transduce mechanical forces into intracellular biochemical signaling and gene expression, is ubiquitous across diverse organisms. Increasing evidence suggests that mechanotransduction significantly influences cell functions and its mis-regulation is at the heart of various pathologies. A quantitative characterization of the relationship between mechanical forces and resulted mechanotransduction is pivotal in understanding the rules of life and innovating new therapeutic strategies [1-3]. However, while such relationship on the cell surface membrane and cytoskeleton have been well studied, little is known about whether/how mechanical forces applied on the cell interior nucleus (“headquarter… More >

  • Open Access

    PROCEEDINGS

    Mechano-Regulated Intercellular Waves Among Cancer Cells

    Chenyu Liang1, Bo Zeng2, Mai Tanaka3, Andrea Kannita Noy1, Matthew Barrett1, Erica Hengartner1, Abygale Cochrane4, Laura Garzon1, Mitchell Litvinov5, Dietmar Siemann3, Xin Tang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011126

    Abstract Cancer accounts for 12.6% of all human deaths worldwide and 90% of cancer-related deaths are due to metastasis: the dissemination of invasive tumor cells from the primary tumors to other vital organs [1-3]. However, how these invasive tumor cells coordinate with each other to achieve the dissemination remains unclear. Recently we discovered that human tumor cells can initiate and transmit previously unknown long-distance (~100s m) intercellular biochemical waves in a microenvironment-mechanics-regulated manner. [4-5] In this presentation, we will present our new results on (1) the 2D/3D spatial-temporal characterization of the long-distance and the intra-/inter-cellular Ca2+ signals; More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    REVIEW

    Advances in micropillar arrays in cellular biomechanics detection and tissue engineering

    XUELING HE, LINLU JIN, YIXUE QIN, JIAN ZHONG, ZHI OUYANG, YE ZENG*

    BIOCELL, Vol.48, No.11, pp. 1521-1529, 2024, DOI:10.32604/biocell.2024.055410 - 07 November 2024

    Abstract Cellular biomechanical features contributed to the occurrence and development of various physiological and pathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment and manipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depth understanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and fine-tuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip and organoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised to update the landscape of stem cell research and tissue engineering. More >

  • Open Access

    ARTICLE

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

    Yuanyuan Feng*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 97-108, 2023, DOI:10.32604/mcb.2023.045804 - 28 December 2023

    Abstract Background: The increasing number of Tai Chi practitioners has led to extensive attention from researchers regarding the role of Tai Chi exercise. Numerous studies have been conducted through various experiments to examine the effects of Tai Chi on physical and mental improvement. Objective: This paper aims to investigate the effect of practicing Tai Chi (eight methods and five steps) on athletes’ body balance control ability from a biomechanical perspective. Methods: Twenty male athletes were randomly divided into two groups. They had no significant differences in age, height, weight, and training time. The Tai Chi group performed… More > Graphic Abstract

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

  • Open Access

    EDITORIAL

    Computational Biomechanics and Machine Learning: Charting the Future of Molecular and Cellular Biomechanics Field

    Lining Arnold Ju*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 95-96, 2023, DOI:10.32604/mcb.2023.042338 - 12 December 2023

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Hot Topics of Molecular and Cellular Biomechanics in 2022

    Guixue Wang1,2,*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 63-66, 2023, DOI:10.32604/mcb.2023.044564 - 29 September 2023

    Abstract The analysis of biomechanical characteristics plays an important role in mastering the technical characteristics of athletes, providing guidance for the formulation and prevention of sports injury training plans and providing theoretical support for research on injury prevention and stability control in the sports field. With the importance of data analysis, the application scope of artificial intelligence methods is more extensive. For example, intelligent training systems can be used for athletes’ personalized and professional training, real-time monitoring and feedback of training data, and further reduce the risk of sports injury. However, deep learning methods process a More >

  • Open Access

    ARTICLE

    Effect of a Double Helical Spring Decompression Structure Backpack on the Lumbar Spine Biomechanics of School-Age Children: A Finite Element Study

    Fengping Li1, Dong Sun1,*, Qiaolin Zhang1,2,3, Hairong Chen1,2,3, István Bíró2,3, Zhiyi Zheng4, Yaodong Gu1,*

    Molecular & Cellular Biomechanics, Vol.20, No.1, pp. 35-47, 2023, DOI:10.32604/mcb.2023.041016 - 20 June 2023

    Abstract Background: A children’s backpack is one of the important school supplies for school-age children. Long-term excessive weight can cause spinal deformity that cannot be reversed. This study compared a double helical spring decompression structure backpack (DHSB) with a traditional backpack (TB) to explore the optimization of decompression devices on upper body pressure. The finite element (FE) method was then used to explore the simulation of lumbar stress with different backpacks, in order to prove that DHSB can reduce the influence of backpack weight on lumbar vertebrae, avoid the occurrence of muscle discomfort and spinal deformity… More > Graphic Abstract

    Effect of a Double Helical Spring Decompression Structure Backpack on the Lumbar Spine Biomechanics of School-Age Children: A Finite Element Study

  • Open Access

    ARTICLE

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

    Junya Tanehashi1, Szuchi Chang2, Takahiro Hirosei3, Masaki Izawa2, Aman Goyal2, Ayumi Takahashi4, Kazuhito Misaji4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2287-2306, 2023, DOI:10.32604/cmes.2023.022432 - 23 November 2022

    Abstract This research aims to quantify driver ride comfort due to changes in damper characteristics between comfort mode and sport mode, considering the vehicle’s inertial behavior. The comfort of riding in an automobile has been evaluated in recent years on the basis of a subjective sensory evaluation given by the driver. However, reflecting driving sensations in design work to improve ride comfort is abstract in nature and difficult to express theoretically. Therefore, we evaluated the human body’s effects while driving scientifically by quantifying the driver’s behavior while operating the steering wheel and the behavior of the… More > Graphic Abstract

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

Displaying 1-10 on page 1 of 71. Per Page