Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (395)
  • Open Access

    ARTICLE

    EdgeGuard-IoT: 6G-Enabled Edge Intelligence for Secure Federated Learning and Adaptive Anomaly Detection in Industry 5.0

    Mohammed Naif Alatawi*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 695-727, 2025, DOI:10.32604/cmc.2025.066606 - 29 August 2025

    Abstract Adaptive robust secure framework plays a vital role in implementing intelligent automation and decentralized decision making of Industry 5.0. Latency, privacy risks and the complexity of industrial networks have been preventing attempts at traditional cloud-based learning systems. We demonstrate that, to overcome these challenges, for instance, the EdgeGuard-IoT framework, a 6G edge intelligence framework enhancing cybersecurity and operational resilience of the smart grid, is needed on the edge to integrate Secure Federated Learning (SFL) and Adaptive Anomaly Detection (AAD). With ultra-reliable low latency communication (URLLC) of 6G, artificial intelligence-based network orchestration, and massive machine type… More >

  • Open Access

    ARTICLE

    Blockchain Sharding Algorithm Based on Account Degree and Frequency

    Jiao Li, Xiaoyu Song*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5239-5254, 2025, DOI:10.32604/cmc.2025.065504 - 30 July 2025

    Abstract The long transaction latency and low throughput of blockchain are the key challenges affecting the large-scale adoption of blockchain technology. Sharding technology is a primary solution by divides the blockchain network into multiple independent shards for parallel transaction processing. However, most existing random or modular schemes fail to consider the transactional relationships between accounts, which leads to a high proportion of cross-shard transactions, thereby increasing the communication overhead and transaction confirmation latency between shards. To solve this problem, this paper proposes a blockchain sharding algorithm based on account degree and frequency (DFSA). The algorithm takes… More >

  • Open Access

    ARTICLE

    Secure Medical Image Transmission Using Chaotic Encryption and Blockchain-Based Integrity Verification

    Rim Amdouni1,2,*, Mahdi Madani3, Mohamed Ali Hajjaji1,4, El Bay Bourennane3, Mohamed Atri5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5527-5553, 2025, DOI:10.32604/cmc.2025.065356 - 30 July 2025

    Abstract Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector. In the context of security, this paper proposes a novel encryption algorithm that integrates Blockchain technology, aiming to improve the security and privacy of transmitted data. The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps: The logistic Map, the Tent Map, and the Henon Map used to generate three encryption keys. The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.… More >

  • Open Access

    REVIEW

    Navigating the Blockchain Trilemma: A Review of Recent Advances and Emerging Solutions in Decentralization, Security, and Scalability Optimization

    Saha Reno1,#,*, Koushik Roy2,#

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2061-2119, 2025, DOI:10.32604/cmc.2025.066366 - 03 July 2025

    Abstract The blockchain trilemma—balancing decentralization, security, and scalability—remains a critical challenge in distributed ledger technology. Despite significant advancements, achieving all three attributes simultaneously continues to elude most blockchain systems, often forcing trade-offs that limit their real-world applicability. This review paper synthesizes current research efforts aimed at resolving the trilemma, focusing on innovative consensus mechanisms, sharding techniques, layer-2 protocols, and hybrid architectural models. We critically analyze recent breakthroughs, including Directed Acyclic Graph (DAG)-based structures, cross-chain interoperability frameworks, and zero-knowledge proof (ZKP) enhancements, which aim to reconcile scalability with robust security and decentralization. Furthermore, we evaluate the trade-offs More >

  • Open Access

    ARTICLE

    Unleashing the Potential of Metaverse in Social IoV: An Authentication Protocol Based on Blockchain

    Tsu-Yang Wu1,2,3, Haozhi Wu3, Maoxin Tang1,2, Saru Kumari4, Chien-Ming Chen1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3175-3192, 2025, DOI:10.32604/cmc.2025.065717 - 03 July 2025

    Abstract As a model for the next generation of the Internet, the metaverse—a fully immersive, hyper-temporal virtual shared space—is transitioning from imagination to reality. At present, the metaverse has been widely applied in a variety of fields, including education, social entertainment, Internet of vehicles (IoV), healthcare, and virtual tours. In IoVs, researchers primarily focus on using the metaverse to improve the traffic safety of vehicles, while paying limited attention to passengers’ social needs. At the same time, Social Internet of Vehicles (SIoV) introduces the concept of social networks in IoV to provide better resources and services… More >

  • Open Access

    REVIEW

    A Survey on Artificial Intelligence and Blockchain Clustering for Enhanced Security in 6G Wireless Networks

    A. F. M. Shahen Shah1,*, Muhammet Ali Karabulut2, Abu Kamruzzaman3, Dalal Alharthi4, Phillip G. Bradford5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 1981-2013, 2025, DOI:10.32604/cmc.2025.064028 - 03 July 2025

    Abstract The advent of 6G wireless technology, which offers previously unattainable data rates, very low latency, and compatibility with a wide range of communication devices, promises to transform the networking environment completely. The 6G wireless proposals aim to expand wireless communication’s capabilities well beyond current levels. This technology is expected to revolutionize how we communicate, connect, and use the power of the digital world. However, maintaining secure and efficient data management becomes crucial as 6G networks grow in size and complexity. This study investigates blockchain clustering and artificial intelligence (AI) approaches to ensure a reliable and… More >

  • Open Access

    ARTICLE

    The Blockchain Neural Network Superior to Deep Learning for Improving the Trust of Supply Chain

    Hsiao-Chun Han, Der-Chen Huang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3921-3941, 2025, DOI:10.32604/cmes.2025.065627 - 30 June 2025

    Abstract With the increasing importance of supply chain transparency, blockchain-based data has emerged as a valuable and verifiable source for analyzing procurement transaction risks. This study extends the mathematical model and proof of ‘the Overall Performance Characteristics of the Supply Chain’ to encompass multiple variables within blockchain data. Utilizing graph theory, the model is further developed into a single-layer neural network, which serves as the foundation for constructing two multi-layer deep learning neural network models, Feedforward Neural Network (abbreviated as FNN) and Deep Clustering Network (abbreviated as DCN). Furthermore, this study retrieves corporate data from the… More > Graphic Abstract

    The Blockchain Neural Network Superior to Deep Learning for Improving the Trust of Supply Chain

  • Open Access

    ARTICLE

    Federated Learning and Blockchain Framework for Scalable and Secure IoT Access Control

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 447-461, 2025, DOI:10.32604/cmc.2025.065426 - 09 June 2025

    Abstract The increasing deployment of Internet of Things (IoT) devices has introduced significant security challenges, including identity spoofing, unauthorized access, and data integrity breaches. Traditional security mechanisms rely on centralized frameworks that suffer from single points of failure, scalability issues, and inefficiencies in real-time security enforcement. To address these limitations, this study proposes the Blockchain-Enhanced Trust and Access Control for IoT Security (BETAC-IoT) model, which integrates blockchain technology, smart contracts, federated learning, and Merkle tree-based integrity verification to enhance IoT security. The proposed model eliminates reliance on centralized authentication by employing decentralized identity management, ensuring tamper-proof… More >

  • Open Access

    ARTICLE

    Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning

    Mohammad Tabrez Quasim1,*, Khair Ul Nisa1, Mohammad Shahid Husain2, Abakar Ibraheem Abdalla Aadam1, Mohammed Waseequ Sheraz1, Mohammad Zunnun Khan1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1169-1187, 2025, DOI:10.32604/cmc.2025.062989 - 09 June 2025

    Abstract Smart edge computing (SEC) is a novel paradigm for computing that could transfer cloud-based applications to the edge network, supporting computation-intensive services like face detection and natural language processing. A core feature of mobile edge computing, SEC improves user experience and device performance by offloading local activities to edge processors. In this framework, blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers, protecting against potential security threats. Additionally, Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically. IoT applications that require significant resources… More >

  • Open Access

    ARTICLE

    Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment: Advancing Big Data Intelligence in Control Systems

    Peiying Zhang1,2,*, Yihong Yu1,2, Jing Liu3, Chong Lv1,2, Lizhuang Tan4,5, Yulin Zhang6,7,8

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4393-4409, 2025, DOI:10.32604/cmc.2025.064654 - 19 May 2025

    Abstract As Internet of Things (IoT) technologies continue to evolve at an unprecedented pace, intelligent big data control and information systems have become critical enablers for organizational digital transformation, facilitating data-driven decision making, fostering innovation ecosystems, and maintaining operational stability. In this study, we propose an advanced deployment algorithm for Service Function Chaining (SFC) that leverages an enhanced Practical Byzantine Fault Tolerance (PBFT) mechanism. The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings. By integrating blockchain technology and Deep Reinforcement Learning (DRL), our algorithm not… More >

Displaying 21-30 on page 3 of 395. Per Page