Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Analytical Investigation of MFD Viscosity and Ohmic Heating in MHD Boundary Layers of Jeffrey Fluid

    K. Sinivasan1, N. Vishnu Ganesh1,*, G. Hirankumar2, M. Al-Mdallal Qasem3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1029-1049, 2025, DOI:10.32604/fdmp.2025.064503 - 30 May 2025

    Abstract In this study, an analytical investigation is carried out to assess the impact of magnetic field-dependent (MFD) viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a horizontally elongating sheet, while taking into account the effects of ohmic dissipation. By applying similarity transformations, the original nonlinear governing equations with partial derivatives are transformed into ordinary differential equations. Analytical expressions for the momentum and energy equations are derived, incorporating the influence of MFD viscosity on the Jeffrey fluid. Then the impact of different parameters is assessed, including magnetic More >

  • Open Access

    ABSTRACT

    Skin Friction Estimation in Adverse Pressure Gradient Boundary Layers Using Corrected Clauser-Chart Method

    Witold Elsner1,*, Artur Dróżdż1, Paweł Niegodajew1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 41-41, 2019, DOI:10.32604/icces.2019.05114

    Abstract Estimation of the wall skin friction in a turbulent boundary layer (TBL) is always challenging due to the large gradient of mean velocity in the near-wall region and requires precise measurements of mean velocity in viscous sublayer. This problem becomes even more serious for a flow with a strong positive pressure gradient where the low velocity closes the wall occurs. Hence, choosing an appropriate measuring technique for the wall skin friction measurement is an important issue. Most commonly used for this purpose is hot-wire technique, where determination of mean velocity gradient is strongly dependent on… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF NON-NEWTONIAN POLYMERIC BOUNDARY LAYER FLOW AND HEAT TRANSFER FROM A PERMEABLE HORIZONTAL ISOTHERMAL CYLINDER

    A. Subba Raoa,* , V. Ramachandra Prasada , P. Rajendraa , M. Sasikalaa , O. Anwar Begb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.2

    Abstract In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary… More >

  • Open Access

    ARTICLE

    Robust Numerical Scheme for Singularly Perturbed Parabolic Initial-Boundary-Value Problems on Equidistributed Mesh

    Srinivasan Natesan1, S. Gowrisankar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.4, pp. 245-268, 2012, DOI:10.3970/cmes.2012.088.245

    Abstract In this article, we propose a parameter-uniform computational technique to solve singularly perturbed parabolic initial-boundary-value problems exhibiting parabolic layers. The domain is discretized with a uniform mesh on the time direction and a nonuniform mesh obtained via equidistribution of a monitor function for the spatial variable. The numerical scheme consists of the implicit-Euler scheme for the time derivative and the classical central difference scheme for the spatial derivative. Truncation error, and stability analysis are carried out. Error estimates are derived, and numerical examples are presented. More >

Displaying 1-10 on page 1 of 4. Per Page