Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention

    Seyong Jin1, Muhammad Fayaz2, L. Minh Dang3, Hyoung-Kyu Song3, Hyeonjoon Moon2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070667 - 10 November 2025

    Abstract Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics. While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information, existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors. In order to address these challenges and maximize the performance of brain tumor segmentation, this research introduces a novel SwinUNETR-based model by integrating a new decoder block, the Hierarchical Channel-wise Attention Decoder (HCAD), into a powerful SwinUNETR encoder. The HCAD… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    Automated Brain Tumor Classification from Magnetic Resonance Images Using Fine-Tuned EfficientNet-B6 with Bayesian Optimization Approach

    Sarfaraz Abdul Sattar Natha1,*, Mohammad Siraj2,*, Majid Altamimi2, Adamali Shah2, Maqsood Mahmud3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4179-4201, 2025, DOI:10.32604/cmes.2025.072529 - 23 December 2025

    Abstract A brain tumor is a disease in which abnormal cells form a tumor in the brain. They are rare and can take many forms, making them difficult to treat, and the survival rate of affected patients is low. Magnetic resonance imaging (MRI) is a crucial tool for diagnosing and localizing brain tumors. However, the manual interpretation of MRI images is tedious and prone to error. As artificial intelligence advances rapidly, DL techniques are increasingly used in medical imaging to accurately detect and diagnose brain tumors. In this study, we introduce a deep convolutional neural network… More >

  • Open Access

    ARTICLE

    Channel-Attention DenseNet with Dilated Convolutions for MRI Brain Tumor Classification

    Abdu Salam1, Mohammad Abrar2, Raja Waseem Anwer3, Farhan Amin4,*, Faizan Ullah5, Isabel de la Torre6,*, Gerardo Mendez Mezquita7, Henry Fabian Gongora7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025

    Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >

  • Open Access

    ARTICLE

    Lightweight Residual Multi-Head Convolution with Channel Attention (ResMHCNN) for End-to-End Classification of Medical Images

    Sudhakar Tummala1,2,*, Sajjad Hussain Chauhdary3, Vikash Singh4, Roshan Kumar5, Seifedine Kadry6, Jungeun Kim7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3585-3605, 2025, DOI:10.32604/cmes.2025.069731 - 30 September 2025

    Abstract Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things (IoMT). Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer. Therefore, this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention (ResMHCNN) blocks to classify medical images. We introduced three novel lightweight deep learning models (BT-Net, LCC-Net, and BC-Net) utilizing the ResMHCNN block as their backbone. These models were cross-validated and tested on three publicly available medical image datasets:… More >

  • Open Access

    REVIEW

    Pharmacological Phase I Clinical Trials in Pediatric Brain Tumors (1990–2024): A Historical Perspective

    Rosa Scarpitta1,#, Emiliano Cappello1,#, Alice Cangialosi1, Veronica Gori1, Giulia De Luca1,2, Giovanni Gori3, Guido Bocci1,*

    Oncology Research, Vol.33, No.10, pp. 2603-2656, 2025, DOI:10.32604/or.2025.066260 - 26 September 2025

    Abstract Central nervous system (CNS) tumors are the most common solid tumors in pediatric patients and the leading cause of childhood cancer-related mortality. Their rarity compared to adult cancers has made enrolling sufficient cases for clinical trials challenging. Consequently, pediatric CNS tumors were long treated with adult protocols despite distinct biological and clinical characteristics. This review examines key aspects of phase I pediatric oncology trials, including study design, primary outcomes, and pharmacological approaches, along with secondary considerations like clinical responses and ethical aspects. Firstly, we evaluated all phase I trial protocols focusing on pediatric CNS tumors… More > Graphic Abstract

    Pharmacological Phase I Clinical Trials in Pediatric Brain Tumors (1990–2024): A Historical Perspective

  • Open Access

    ARTICLE

    Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing

    Khalil Ibrahim Lairedj1, Zouaoui Chama1, Amina Bagdaoui1, Samia Larguech2, Younes Menni3,4,*, Nidhal Becheikh5, Lioua Kolsi6,*, Badr M. Alshammari7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2419-2443, 2025, DOI:10.32604/cmes.2025.069396 - 31 August 2025

    Abstract Brain tumor segmentation from Magnetic Resonance Imaging (MRI) supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans, making it a crucial yet challenging task. Supervised models such as 3D U-Net perform well in this domain, but their accuracy significantly improves with appropriate preprocessing. This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model (GGMM) to T1 contrast-enhanced MRI scans from the BraTS 2020 dataset. The Expectation-Maximization (EM) algorithm is employed to estimate parameters for four tissue classes, generating a More >

  • Open Access

    ARTICLE

    An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images

    Fatma M. Talaat1,2,*, Mohamed Salem1, Mohamed Shehata3,4,*, Warda M. Shaban5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2325-2358, 2025, DOI:10.32604/cmes.2025.067195 - 31 August 2025

    Abstract The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists. The rise in patient numbers has substantially elevated the data processing volume, making conventional methods both costly and inefficient. Recently, Artificial Intelligence (AI) has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame. Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors. This paper proposes a new model based on AI, called the Brain Tumor Detection (BTD)… More >

  • Open Access

    ARTICLE

    CMS-YOLO: An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s

    Li Li, Xiao Wang*, Ran Ding, Linlin Luo, Qinmu Wu, Zhiqin He

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1287-1309, 2025, DOI:10.32604/cmc.2025.065670 - 29 August 2025

    Abstract Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues, and their appearance may lead to a series of complex symptoms. However, current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology, size, and complex background, resulting in low detection accuracy, high rate of misdiagnosis and underdiagnosis, and challenges in meeting clinical needs. Therefore, this paper proposes the CMS-YOLO network model for multi-category brain tumor detection, which is based on the You Only Look Once version 10 (YOLOv10s) algorithm. This model… More >

  • Open Access

    ARTICLE

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

    Yao-Tien Chen1, Nisar Ahmad1,*, Khursheed Aurangzeb2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1197-1224, 2025, DOI:10.32604/cmes.2025.066580 - 31 July 2025

    Abstract Accurate and efficient brain tumor segmentation is essential for early diagnosis, treatment planning, and clinical decision-making. However, the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection. While U-Net-based architectures have demonstrated strong performance in medical image segmentation, there remains room for improvement in feature extraction and localization accuracy. In this study, we propose a novel hybrid model designed to enhance 3D brain tumor segmentation. The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder. Additionally, to… More > Graphic Abstract

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

Displaying 1-10 on page 1 of 93. Per Page