Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Liquid Particles Tracing in Three-dimensional Buoyancy-driven Flows

    D. E. Melnikov1, V. M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 189-200, 2005, DOI:10.3970/fdmp.2005.001.189

    Abstract Buoyancy-driven convective flows are numerically analyzed in a cubic enclosure, containing a liquid subjected to a temperature difference between opposite lateral walls; all other walls are thermally insulated. The stationary gravity vector is perpendicular to the applied temperature gradient. The steady flow patterns are investigated within the framework of a liquid particles tracing technique. Three tracing techniques are compared: the first, based on a trilinear interpolation of the liquid velocity defined on the computational grid and an eighth order in time Runge-Kutta method; the second and the third, using a resampling the velocity field on a new approximately twice finer… More >

  • Open Access

    ARTICLE

    How Does Buoyancy-driven Convection Affect Biological Macromolecular Crystallization? An Analysis of Microgravity and Hypergravity Effects by Means of Magnetic Field Gradients

    N.I. Wakayama1, D.C. Yin2, J.W. Qi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 153-170, 2005, DOI:10.3970/fdmp.2005.001.153

    Abstract The production of crystals of adequate size and high quality is the "bottleneck'' for three-dimensional structure analysis of protein crystals. In this work, in order to shed additional light on the (still controversial) beneficial effect of microgravity on crystal growth, we focus on recent advanced experimental and theoretical research about the effects of buoyancy-driven convection on protein crystallization. In the light of the numerical studies the following major outcomes can be highlighted: (1) when the crystal size exceeds several dozens of µm, buoyancy-driven convection dominates solute transport near the growing crystal and the crystal growth rate becomes larger than that… More >

  • Open Access

    ARTICLE

    On the Nature and Structure of Possible Three-dimensional Steady Flows in Closed and Open Parallelepipedic and Cubical Containers under Different Heating Conditions and Driving Forces.

    Marcello Lappa1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 1-20, 2005, DOI:10.3970/fdmp.2005.001.001

    Abstract Possible natural transport mechanisms in cubical and shallow cavities with different heating conditions (from below or from the side) are investigated by means of numerical solution of the non-linear model equations and multiprocessor computations. Attention is focused on a variety of three-dimensional steady effects that can arise in such configurations in the case of low-Pr liquids (silicon melt) even for relatively small values of the temperature gradient due to localized boundary effects and/or true instabilities of the flow. Such aspects are still poorly known or completely ignored owing to the fact that most of the existing experiments focused on the… More >

Displaying 21-30 on page 3 of 23. Per Page