Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Analysis of the Quasi-Static Buffeting Responses of Transmission Lines to Moving Downburst

    Qigang Sun1, Jian Wu1, Dahai Wang2,*, Yue Xiang2, Haitao Liu1, Xiaobin Sun3

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 287-302, 2020, DOI:10.32604/cmes.2020.09118

    Abstract Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions. In this paper, a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure. The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study. Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method. More >

  • Open Access

    ARTICLE

    On Caputo-Type Cable Equation: Analysis and Computation

    Zhen Wang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 353-376, 2020, DOI:10.32604/cmes.2020.08776

    Abstract In this paper, a special case of nonlinear time fractional cable equation is studied. For the equation defined on a bounded domain, the existence, uniqueness, and regularity of the solution are firstly studied. Furthermore, it is numerically studied via the weighted and shifted Grünwald difference (WSGD) methods/the local discontinuous Galerkin (LDG) finite element methods. The derived numerical scheme has been proved to be stable and convergent with order O(∆t2 + hk+1), where ∆t, h, k are the time stepsize, the spatial stepsize, and the degree of piecewise polynomials, respectively. Finally, a numerical experiment is presented to verify the theoretical analysis. More >

  • Open Access

    ARTICLE

    Form Finding and Collapse Analysis of Cable Nets Under Dynamic Loads Based on Finite Particle Method

    Ying Yu1,*, Ping Xia1, Chunwei Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 73-89, 2018, DOI:10.31614/cmes.2018.04063

    Abstract This paper presents form finding and collapse analysis of cable net structure under strong wind using the finite particle method (FPM). As a kind of particle method, the theoretical fundamentals of the FPM are given. Methods to handle geometric and material nonlinearities of cable element are proposed. The fracture criterion and model for cable element are built to simulate the failure of cable nets. The form-finding and load analysis of two cable nets are then performed in order to initialize the successive of nonlinear analysis. The failure progress of cable nets under dynamic loads is simulated, and the dynamic responses… More >

  • Open Access

    ABSTRACT

    Development of A New Type of Winch with Steel Armoured Umbilical Cable Used in Submarine Rescue Chamber(SRC) with Mobility

    ZHAO Jun-hai, HU Yong, Wang Fang, HOU De-yong

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.019.051

    Abstract With the number of submarines increasing rapidly, there are many accidents occurred during submarines’s cruising. Especially the universal attentions to submarine rescue are awaken by the Russian Navy’s second-generation strategic nuclear submarine "Kursk" accident.
    One of the important means for submarine rescue is SRC. Since 70th last century abroad, Navy’s submarine rescue armies have been equipped with the SRCs. Entering 21th-century, it is necessary for mating exercises between SRC and disabled submarine(DISSUB) chosen still by Navy’s submarine rescue armies in Navy’s large military drills at home and abroad. The dedicated mating platforms for the SRCs are also fitted to… More >

  • Open Access

    ABSTRACT

    Stay cable vehicle live load effects analysis based on structural health monitoring data

    C.M. Lan1, H. Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 75-82, 2009, DOI:10.3970/icces.2009.012.075

    Abstract Stay cables are some of the most critical structural components of a bridge. However, stay cables readily suffer from corrosion damage and stress corrosion damage. Thus, health monitoring of stay cables is important for ensuring the integrity and safety of a bridge. Glass Fibre Reinforced Polymer Optical Fibre Bragg Grating (GFRP-OFBG) cable, a kind of fibre Bragg grating optical sensing technology-based smart stay cables, is proposed in this study. The fabrication procedure of the smart stay cable was developed and the self-sensing property of the smart stay cable was calibrated. The application of the smart stay cables on the Tianjin… More >

  • Open Access

    ARTICLE

    Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue

    Ying Wang1,*, Yuqian Zheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 375-419, 2019, DOI:10.32604/cmes.2019.06905

    Abstract A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper. Based on pitting accelerated crack nucleation theory in combination with continuum mechanics, cellular automata technology (CA) and finite element (FE) analysis, the damage evolution process of steel wire under pre-corrosion and fatigue is simulated. This method automatically generates a high-strength steel wire model with initial random pitting defects, and on the basis of this model, the fatigue damage evolution process is simulated; thus, the fatigue life and fatigue performance of the corroded… More >

  • Open Access

    ARTICLE

    Numerical Analysis for the Mooring System with Nonlinear Elastic Mooring Cables

    Z.W. Wu1, J.K. Liu1, Z.Q. Liu1,2, Z.R. Lu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 149-168, 2014, DOI:10.3970/cmes.2014.102.149

    Abstract This paper presents numerical analysis for the mooring system with nonlinear elastic mooring cables. The equation of motion for nonlinear elastic mooring cable is established by utilizing finite element method. A marine mooring system of floating rectangular box with nonlinear elastic cables is taken as an illustrative example. The dynamic analysis, static analysis, and uniformity analysis are carried out for the polyester mooring system and the results are compared with those of the steel wire and the chain mooring system. Results from the present study can provide valuable recommendations for the design and construction of the mooring system with nonlinear… More >

  • Open Access

    ARTICLE

    A High-Fidelity Cable-Analogy Continuum Triangular Element for the Large Strain, Large Deformation, Analysis of Membrane Structures

    P.D.Gosling1,2, L. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 203-252, 2011, DOI:10.3970/cmes.2011.071.203

    Abstract The analysis of a continuum membrane by means of a discrete network of cables or bars is an efficient and readily tractable approach to the solution of a complex mechanics problem. However, is so doing, compromises are made in the quality of the approximation of the strain field. It is shown in this paper that the original form of the cable-analogy continuum triangle formulation is degraded by an inherent assumption of small strains in the underlying equations, in which the term ßmall" is shown to be "negligibly small". A revised version of this formulation is proposed in which a modification… More >

  • Open Access

    ARTICLE

    Nonlinear Analysis of Pin-Jointed Assemblies with Buckling and Unilateral Members

    K.Yu. Volokh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 389-400, 2001, DOI:10.3970/cmes.2001.002.389

    Abstract A computational framework is described for modeling pin-jointed structures comprising unilateral cable members and slender struts. The deep postbuckling behavior of struts is considered by means of 'elastica' analytical approximation. Prestressing is allowed. The proposed approach is incorporated into equilibrium path following procedures and illustrated in numerical examples. More >

Displaying 21-30 on page 3 of 29. Per Page