Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access


    N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance

    Imam Khambali1,2,*, Budhi Priyanto1,2, Retno Asih1, Malik Anjelh Baqiya1, Muhammad Mahyiddin Ramli3, Nurul Huda Osman4, Sarayut Tunmee5, Hideki Nakajima5, Triwikantoro1, Mochamad Zainuri1, Darminto1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1823-1833, 2023, DOI:10.32604/jrm.2023.025026

    Abstract An rGO−like carbon compound has been synthesized from biomass, i.e., old coconut shell, by a carbonization process followed by heating at 400°C for 5 h. The nitrogen doping was achieved by adding the urea (CH4N2O) and stirring at 70°C for 14 h. The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy. The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy, while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry. The highest specific capacitance of 72.78 F/g is achieved by… More > Graphic Abstract

    N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance

  • Open Access


    Preparation of Eco-Friendly High-Performance Manganese Dioxide Supercapacitors by Linear Sweep Voltammetry

    Junshan Zhao1,#, Yihan Shi1,#, Ming Zhang1, Liu Zhang1, Xumei Cui1, Xinghua Zhu2, Jitong Su1, Dandan Jing1, Dingyu Yang1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 79-91, 2023, DOI:10.32604/jrm.2023.022030

    Abstract In this paper, the non-polluting, non-toxic, and eco-friendly material-MnO2 electrodes were deposited on three-dimensional porous nickel (Ni) foam by linear sweep voltammetry, and the entire electrodeposition process did not require sintering of the material, which was fast and convenient while avoiding unnecessary energy consumption and thus was environmentally friendly. Scanning electron microscopy (SEM) and transmission electron microscopy were used to examine the surface and microscopic characteristics of each sample (TEM). Chronoamperometry (CA), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) were then used to determine the electrochemical characteristics of the manufactured samples. The result suggests that the… More >

  • Open Access


    Residual Autoencoder Deep Neural Network for Electrical Capacitance Tomography

    Wael Deabes1,2,*, Kheir Eddine Bouazza1,3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6307-6326, 2022, DOI:10.32604/cmc.2022.030420

    Abstract Great achievements have been made during the last decades in the field of Electrical Capacitance Tomography (ECT) image reconstruction. However, there is still a need to make these image reconstruction results faster and of better quality. Recently, Deep Learning (DL) is flourishing and is adopted in many fields. The DL is very good at dealing with complex nonlinear functions and it is built using several series of Artificial Neural Networks (ANNs). An ECT image reconstruction model using DNN is proposed in this paper. The proposed model mainly uses Residual Autoencoder called (ECT_ResAE). A large-scale dataset of 320 k instances have… More >

  • Open Access


    Visualization Detection of Solid–Liquid Two-Phase Flow in Filling Pipeline by Electrical Capacitance Tomography Technology

    Ningbo Jing1, Mingqiao Li1, Lang Liu2,*, Yutong Shen1, Peijiao Yang1, Xuebin Qin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 465-476, 2022, DOI:10.32604/cmes.2022.018965

    Abstract During mine filling, the caking in the pipeline and the waste rock in the filling slurry may cause serious safety accidents such as pipe blocking or explosion. Therefore, the visualization of the inner mine filling of the solid–liquid two-phase flow in the pipeline is important. This paper proposes a method based on capacitance tomography for the visualization of the solid–liquid distribution on the section of a filling pipe. A feedback network is used for electrical capacitance tomography reconstruction. This reconstruction method uses radial basis function neural network fitting to determine the relationship between the capacitance vector and medium distribution error.… More >

  • Open Access


    Image Reconstruction for ECT under Compressed Sensing Framework Based on an Overcomplete Dictionary

    Xuebin Qin1,*, Yutong Shen1, Jiachen Hu1, Mingqiao Li1, Peijiao Yang1, Chenchen Ji1, Xinlong Zhu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1699-1717, 2022, DOI:10.32604/cmes.2022.018234

    Abstract Electrical capacitance tomography (ECT) has great application potential in multiphase process monitoring, and its visualization results are of great significance for studying the changes in two-phase flow in closed environments. In this paper, compressed sensing (CS) theory based on dictionary learning is introduced to the inverse problem of ECT, and the K-SVD algorithm is used to learn the overcomplete dictionary to establish a nonlinear mapping between observed capacitance and sparse space. Because the trained overcomplete dictionary has the property to match few features of interest in the reconstructed image of ECT, it is not necessary to rely on the sparsity… More >

  • Open Access


    Damage Detection for CFRP Based on Planar Electrical Capacitance Tomography

    Wenru Fan, Chi Wang*

    Structural Durability & Health Monitoring, Vol.14, No.4, pp. 303-314, 2020, DOI:10.32604/sdhm.2020.011009

    Abstract Due to the widespread use of carbon fiber reinforced polymer/plastic (CFRP), the nondestructive structural health monitoring for CFRP is playing an increasingly essential role. As a nonradiative, noninvasive and nondestructive detection technique, planar electrical capacitance tomography (PECT) electrodes array is employed in this paper to reconstruct the damage image according to the calculated dielectric constant changes. The shape and duty ratio of PECT electrodes are optimized according to the relations between sensitivity distribution and the dielectric constant of different anisotropic degrees. The sensitivity matrix of optimized PECT sensor is more uniform as the result shows, because the sensitivity of insensitivity… More >

  • Open Access


    Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance

    Nishit Savla1, Raksha Anand2, Soumya Pandit2,*, Ram Prasad3,*

    Journal of Renewable Materials, Vol.8, No.12, pp. 1581-1605, 2020, DOI:10.32604/jrm.2020.011803

    Abstract Microbial fuel cells (MFCs) are an attractive innovation at the nexus of energy and water security for the future. MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step. The material of the anode plays a vital role in increasing the MFC’s power output. The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties. The nanomaterials in anode gives a high surface area, improved electron transfer promotes electroactive biofilm. Enhanced power output in terms of Direct current (DC) can be obtained as the consequence of improved microbe-electrode interaction. However,… More >

Displaying 1-10 on page 1 of 7. Per Page