Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Dissolution at a Meniscus-Adhered Nanofiber

    Shihao Tian1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09327

    Abstract When one soluble fiber is partially merged into liquid, a meniscus forms and the fiber can be dissolved into one pinpoint with curvature. This process has been used in the manufacture of sophisticated pinpoints. However, it is hard to observe the dissolution process in the laboratory and the dissolution mechanisms are still far from being well understood in the nanoscale. Here we utilize molecular dynamics simulations to study the dissolution process of one meniscus-adhered nanofiber. We find that the tip’s curvature radius decreases and then increases, reaching the maximum in the middle state. This state is defined as the “Sh… More >

  • Open Access

    ARTICLE

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    M.El-Gammal1, J.M.Floryan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 17-26, 2006, DOI:10.3970/fdmp.2006.002.017

    Abstract Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, regardless of whether the cavity… More >

  • Open Access

    ARTICLE

    On the Dynamic Capillary Effects in the Wetting and evaporation process of Binary Droplets

    K. Sefiane1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 267-276, 2005, DOI:10.3970/fdmp.2005.001.267

    Abstract In this paper the experimental results on the wetting behaviour of volatile binary sessile drops are reported. The evaporation rate is varied through the control of the ambient total pressure. The dynamic wetting contact angle of an evaporating Water-Ethanol drop is investigated at various sub-atmospheric pressures. The wetting properties (contact angle, shape and volume) are monitored in time using a drop shape analysis instrument. The results show that the evaporation of the binary droplet takes place in two stages: the first stage where the wetting behaviour is very similar to the pure ethanol case and a second stage where the… More >

Displaying 1-10 on page 1 of 3. Per Page